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This report describes the methodology, data, conclusions, and enhanced models regarding 
the validation of two sets of models developed in SHRP 2 Reliability Project L03, Analytical 
Procedures for Determining the Impacts of Reliability Mitigation Strategies. The signifi-
cance of the L03 models is they were among the first models that could be used to predict 
travel time reliability.

Loosely speaking, reliability is defined as how travel time changes over time. More rig-
orously, reliability is defined as “the level of consistency in travel conditions over time . . . 
measured by describing the distribution of travel times that occur over a substantial period 
of time.”1 Specific reliability measures can be derived from the travel time distribution, such 
as the standard deviation and the Travel Time Index (n), or TTIn, which is the nth percentile 
of the travel time distribution divided by the free-flow travel time.

Two sets of models were developed in Project L03, the data-poor and the data-rich models. 
The data-poor models predict a measure of reliability as a function of just the mean Travel 
Time Index, except for the on-time measures. Because these data-poor models have but one 
independent variable, these simple models provide a great deal of versatility in estimating 
reliability. Data-poor models enable the use of straightforward equations for predicting reli-
ability in sketch planning and in complex modeling systems such as a trip-based demand 
model married to a network model.

The data-rich models predict a measure of the variability of travel time as a function of a 
number of important variables that Project L03 found to be meaningful explanatory vari-
ables: the demand-to-capacity ratio, lane-hours lost (due to traffic incidents or work zones), 
and rainfall. The data-rich models can be used to predict or estimate reliability when any of 
these causal variables appear in an equation and data are available.

Both the data-poor and data-rich models were estimated from data collected over a year 
from a subset of urban freeway segments in seven cities. The data-poor models apply to all 
time slices throughout a day, whereas four sets of data-rich models concerning different 
moments of the TTI distribution (mean, 99th, 95th, 90th, 80th, 50th, and 10th percentiles) 
were estimated for the peak hour, the peak period, the midday, and weekdays.

The objectives of Project L33, Validation of Urban Freeway Models, were threefold: 
(1) attempt to validate the “data-poor” and “data-rich” models, (2) develop enhanced 
models if justified, and (3) promote acceptance and use of the L03 type of models for 
planning, programming, project development, design, systems operations, and further 
research.

F O R E W O R D
William Hyman, SHRP 2 Senior Program Officer, Reliability

1 Cambridge Systematics, Texas Transportation Institute, University of Washington, and Dowling Associates. 2006. NCHRP 
Web-Only Document 97: Guide to Effective Freeway Performance Measurement: Final Report and Guidebook. Transportation 
Research Board of the National Academies, Washington, D.C.



In conducting the validation, the research team was prohibited from using data that were 
used to estimate the data-poor and data-rich models. Validation data came from California, 
Minnesota, Utah (Salt Lake City), and Washington (Spokane) and totaled 323 segment-years 
covering both midday and peak periods. L03 models used data from some of these same 
places, but the same data were not used in the validation, as required.

The project used two criteria for assessing the validity of the L03 models. The first was 
the difference between the predicted and measured values of the dependent variable. The 
second was whether the estimated models satisfied the assumptions of linear regression.

This report describes the degree to which the different models perform well in terms of 
prediction and satisfying regression assumptions. The data-poor models predicted accept-
ably well as documented here but had some shortcomings in terms of satisfying the regression 
assumptions. Three sets of enhanced models were developed. The research team could not 
find satisfactory enhancements to the data-rich models. The degree to which the data-rich 
models predict well and satisfy the assumptions of linear regression is also described in the 
report.
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Overview

The goal of the SHRP 2 L33 Validation of Urban Freeways project is to assess and enhance the 
predictive travel time reliability models developed in the SHRP 2 L03 project, Analytical Procedures 
for Determining the Impacts of Reliability Mitigation Strategies. SHRP 2 L03, which concluded 
in 2010, developed two categories of reliability models to be used for the estimation or prediction 
of travel time reliability within planning, programming, and systems management contexts: 
data-rich and data-poor models.

The L33 project was tasked with (1) validating the data-rich and data-poor equations with 
new data sets; (2) assessing the validation outcomes to recommend potential enhancements; 
(3) exploring enhancements and developing a final set of predictive equations; (4) validating the 
enhanced models; and (5) developing a clear set of application guidelines for practitioners to use 
with the project outputs.

The work outputs of this project include a set of recalibrated data-poor models, a set of enhanced 
data-rich models, and revised application guidelines for using the models.

Models

Data-poor, the first category of L03 models, predicts a select set of travel time reliability measures 
for urban freeway sections based only on the mean travel time for the section. This category of 
models was intended for use in locations with low availability of traffic and related types of data. 
The second category—data-rich models—predicts a similar set of travel time reliability measures 
based on the following input measures related to the causes of congestion and unreliability: (1) the 
lane-hours lost caused by incidents; (2) the hours of precipitation exceeding 1/20th of an inch; 
(3) the average demand-to-capacity ratio; and/or (4) the 99th-percentile demand-to-capacity ratio. 
In cases where one or more of these pieces of data are not available, the L03 project provides 
heuristic approaches to estimate them from commonly available data. Both models predict reli-
ability over the course of the year. The data-poor models can be fit to any defined time period. 
The data-rich models estimate or predict travel time reliability within four defined time periods: 
peak hour, peak period, midday, and weekday.

The L03 models were calibrated using data collected in metropolitan areas from around the 
country. They were validated using data collected in the Seattle, Washington, region.

Method

Both the validation and the enhancement tasks rely on the collection of traffic, incident, weather, 
and capacity data sets collected from a diverse set of metropolitan areas, with care taken to avoid 
using the same data collected in the L03 project. The L33 project collected the data sets needed 

Executive Summary
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for the data-rich and data-poor models in the Los Angeles, California; Minneapolis–Saint Paul, 
Minnesota; Sacramento, California; Salt Lake City, Utah; San Diego and San Francisco, California; 
and Spokane, Washington, metropolitan regions.

The validation was performed by processing the collected data in accordance with L03-established 
methodologies and using it to compare the predicted reliability metrics with the measured ones. 
The validation assessed both the error of each predictive equation and whether the results met 
the generalized assumptions of regression modeling.

The enhancement was performed in two ways: (1) recalibration of all of the L03 models using 
data collected in the California regions and the Minneapolis region; and (2) testing new model 
forms with the L33 data sets. Performance of the recalibrated and new models was measured in 
the same way as the validation: assessing the error of each predictive equation and whether the 
results met the generalized assumptions of regression modeling.

The data-poor enhancement process tested the performance of three new model forms to predict 
the 95th-, 90th-, and 80th-percentile Travel Time Indices (TTIs): (1) a single parameter power 
form model; (2) a two-parameter power form model; and (3) a two-parameter polynomial model.

Validation Findings

The validation for the data-poor models yielded the following findings:

1. The errors for most of the models across the study regions were acceptable.
2. The models violated the assumptions of regression, particularly in that the residuals did not 

average to zero.

From these results, it was concluded that the best way to proceed with the data-poor work was 
to compare the results of recalibrating the existing equations using the new data sets with the 
results of the performance of new model forms.

The validation for the data-rich models revealed the following key insights:

1. The performance of the models varied regionally, with the highest errors measured in the 
California regions. Additionally, the models tended to systematically overpredict reliability in 
some regions and underpredict it in others.

2. The performance of the models varied by time period, with the highest errors measured during 
the peak period.

3. The error was highest for the equations that predict higher moments of the travel time distri-
bution (such as the 95th- and 99th-percentile TTIs).

4. The models systematically violated a number of the assumptions of regression, leading the 
team to conclude that they may be missing one or more important variables for predicting 
reliability.

In addition to these validation findings, the team noted that a number of the study segments, 
particularly those in Salt Lake City and Spokane, did not meet the L03 requirements for having 
a peak hour and a peak period. This suggested the need for a revision of these definitions, to 
ensure that all segments can get estimation results for these important time periods.

From the data-rich validation results, the team concluded that the models would best be 
improved by enhancement, specifically through seeking additional variables to include in the 
equations and exploring modifications to the model functional form.

Enhancement Findings

Enhancement was explored for the data-rich models, but no suitable enhancements resulting in 
performance improvements were found.
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The data-poor enhancement process yielded the following findings:

1. In general, the recalibrated L03 models yielded reasonable error values (measured by the 
mean square error), but still violated the assumptions of generalized regression.

2. The new models yielded similar or improved error values compared with the recalibrated 
L03 models and better satisfied the assumptions of regression.

Overall, the L33 research team recommends that the SHRP 2 program adopt the new data-
poor models. They allow for a consistent model form between all of the predictive equations and 
better capture the intuitive increasing rate of change between the mean TTI and the percentile 
TTI as the mean TTI increases.
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Context

One of key objectives of the SHRP 2 Reliability program 
research is to develop methods for researchers and practitioners 
to evaluate the causal factors of travel time unreliability. The 
Federal Highway Administration (FHWA) defined three types 
of sources that contribute to congestion and travel time vari-
ability: (1) traffic-influencing events, like incidents, work zones, 
and weather; (2) traffic demand, either through day-to-day 
variability or special events; and (3) physical highway features, 
like traffic control devices (such as ramp meters) and physical 
bottlenecks (1). Various projects within the SHRP 2 Reliability 
program have investigated various pieces of how to under-
stand the relationship between these sources and travel time 
variability. These efforts include how the source data can be 
measured and processed (SHRP 2 L02), how simulation models 
can incorporate nonrecurrent congestion sources to generate 
travel time distributions (SHRP 2 L04), how nonrecurrent 
congestion impacts on travel time reliability can be incorpo-
rated into the Highway Capacity Manual (SHRP 2 L08), and 
how the reliability improvements of various interventions can 
be predicted (SHRP 2 L03).

The SHRP 2 L03 project collected traffic, incident, and 
weather data on urban freeway sections from around the 
United States and used it to develop cross-sectional statisti-
cal models to predict various moments of the travel time 
distribution based on the explanatory variables. To accom-
modate the needs of model users with varying quantities  
of data available to them, the L03 team developed two types 
of models:

•	 Data-poor models, in which travel time reliability is a func-
tion of the mean travel time; and

•	 Data-rich models, in which travel time reliability is a function 
of some combination of incident lane hours lost, hours of 
rainfall, and the demand-to-capacity ratio.

These L03 models were calibrated in sites around the country 
and validated using data collected in the Seattle metropolitan 
area. The models were also adapted and implemented in the 
SHRP 2 L07 project within a spreadsheet tool to evaluate the 
cost-effectiveness of highway design features.

The SHRP 2 L33 project, Validation of Urban Freeway 
Models, had three specific goals: (1) perform further validation 
of the data-rich and data-poor predictive urban freeway travel 
time reliability models developed in the SHRP 2 L03 project; 
(2) enhance the models to improve their prediction of the 
reliability impacts of various reliability improvement strate-
gies; and (3) validate the enhanced models to promote their 
acceptance and use among researchers and practitioners.

In conducting research on travel time reliability, it should 
be noted that, while it is relatively straightforward to calculate 
reliability using measured data, it is a challenging task to 
predict reliability at the individual route level using a model. 
This is because people make route choice decisions dynamically 
in the real world, especially with the recent trends of traffic and 
incident information made available in real time to the traveling 
public.

L03 Review

This section summarizes the L03 predictive model work to 
provide a framing for the work done in L33. More information 
on L03 can be found in this report in Appendix A.

Modeling Approach

For the predictive models, the L03 project team collected traffic, 
incident, work zone, and weather data in eight metropolitan 
areas: Houston, Texas; Minneapolis, Minnesota; Los Angeles, 
San Francisco, and San Diego, California; Atlanta, Georgia; 
Jacksonville, Florida; and Seattle, Washington. Data were 

C h a p T E R  1

Background
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Following initial investigation of the relationships between 
the assembled variables and the calculated reliability metrics, 
the L03 team proposed two model forms:

1. “A detailed deterministic model that uses all of the data 
being collected to a maximum degree (data-rich model)”

2. “A simpler model based on the fact that many of the applica-
tions [Highway Capacity Manual (HCM) and travel demand 
forecasting models] work in an environment with limited 
data (data-poor model)”

Each of these models is described in further detail below.

Data-Rich Models

The data-rich models were calibrated to predict reliability 
measures within four different time periods:

•	 Peak hour: 60-min period during which the space mean 
speed is less than 45 mph

collected on a total of 81 urban freeway study sections, which 
shared the following characteristics:

•	 Relatively homogeneous in terms of traffic and geometric 
conditions

•	 Represent portions of trips taken by travelers
•	 No midsection freeway-to-freeway interchanges

From this data set, the L03 team calculated a number of 
explanatory variables to test for inclusion in the models. 
Illustrative examples of these variables, as well as the reliability 
metrics computed as potential dependent variables, are shown 
in Table 1.1. It is important to note that the reliability metrics 
shown in this table and used in the modeling are calculated as 
the volume-weighted average of all of the 5-min-level Travel 
Time Indices in the given time period over a year. This is a critical 
piece of the analysis chain, as it means that the ultimate travel 
time distributions and results are weighted toward the time 
periods that are the most heavily traveled. This is in contrast to 
a facility-level perspective, which treats each measurement 
equally regardless of how many vehicles experienced it.

Table 1.1. L03 Modeling Analysis Data Set

Category Sample Measures

Dependent Variables

Reliability Metrics •	 Mean, standard deviation, median, mode, minimum, and percentile travel times and TTIs
•	 Buffer indices, planning time index, skew statistics, and misery index
•	 On-time percentages

Independent Variables

Area Operations Characteristics •	 Number of service patrol trucks
•	 Service patrol trucks per mile
•	 Quick Clearance Law?
•	 Number of ramp meters, dynamic message signs, and closed circuit television (CCTV) cameras

Service Patrols •	 Number of service patrol trucks covering section
•	 Percentage of time periods when trucks are active

Capacity and Volume Characteristics •	 Start and end times of peak hour and peak period
•	 Calculated and imputed vehicle miles traveled
•	 Average of demand-to-capacity ratio on all section links
•	 Highest demand-to-capacity ratio of all links on the section

Incident Characteristics •	 Number of incidents
•	 Incident rate per 100 million vehicle miles
•	 Incident lane-hours lost
•	 Incident shoulder hours lost
•	 Mean, standard deviation, and 95th percentile of incident duration

Event Characteristics •	 Number of work zones
•	 Work zone lane-hours lost
•	 Work zone shoulder hours lost
•	 Mean, standard deviation, and 95th percentile of work zone duration

Weather Characteristics •	 Number of hours with precipitation amounts exceeding various thresholds
•	 Number of hours with measurable snow
•	 Number of hours with frozen precipitation
•	 Number of hours with fog
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•	 Peak period: period of at least 75 min during which is the 
space mean speed is less than 45 mph

•	 Midday: 11:00 a.m.–2:00 p.m., Monday–Friday
•	 Weekday: All day, Monday–Friday

The team selected a natural logarithmic form for the regres-
sion model, because it is able to predict a TTI of 1 when the 
independent variables are 0. Root mean square error (RMSE) 
was used as the goodness-of-fit measure to compare between 
models with different combinations of independent variables. 
Variables were allowed to stay in the model equation with an 
alpha level of 0.1.

After evaluating the potential independent variables, the 
L03 team ultimately selected the following to predict reliability 
within the defined time periods:

•	 Incident lane-hours lost (ILHL)
•	 Hours of precipitation exceeding 0.05 in. (RainHrs)
•	 Critical demand-to-capacity ratio (dccrit)
•	 Average demand-to-capacity ratio (dcaverage)

Note that demand cannot be directly measured, and methods 
to calculate this and other independent variables are given in 
detail in Appendix C.

Table 1.2 shows the explanatory variables that were used 
to predict different moments of the travel time index dis-
tribution (column names) within the defined time periods 
(row names). Below the explanatory variables, it also displays 
the RMSE for each model measured during the calibration 
process.

Data-Poor Models

The data-poor model was first envisioned to take advan-
tage of commonly available independent variables (such as 
annual collisions per million, vehicle miles traveled, speed 

limit, and yearly demand profiles). However, exploratory 
analysis showed promising relationships between the mean 
travel time and all selected reliability metrics. Because the 
mean travel time is a ready output from planning and oper-
ational tools such as travel demand and simulation models, 
this relationship became the focus of the data-poor model 
development.

Unlike the data-rich models, the data-poor models were 
not calibrated for specific time periods. The original set of 
data-poor equations developed in L03 and presented in the 
L03 final report use an exponential form to relate the mean 
TTI with measures of reliability. The data-poor models were 
developed to predict some reliability metrics not directly 
pulled from the travel time distribution. The definitions for 
these are

•	 PctTripsOnTimeX: The percentage of on-time trips made 
with respect to X times the median TTI

•	 PctTripsOnTimeXmph: The percentage of on-time trips 
made with respect to a speed threshold of X mph

The functional form and calibration RMSEs for these models 
are shown in Tables 1.3 and 1.4. These original data-poor 
models were revised with new model forms or updated with 
new coefficients following the finalization of the L03 final 
report and were included in an appendix to the final report. No 
calibration errors were presented for these revised equations. 
The new functional forms are shown in Tables 1.3 and 1.4. The 
revised models for the TTI moment predictions were validated 
and explored for enhancement in the L33 project.

Validation

The L03 final report shows validation results for a select set 
of the data-rich and original data-poor models using data 

Table 1.2. L03 Data-Rich Explanatory Variables and RMSE by Model

Period 10th Mean 50th 80th 95th 99th

Peak Hour Variable dccrit, ILHL, RainHrs dccrit, ILHL dccrit, ILHL dccrit, ILHL dccrit, ILHL, RainHrs dccrit, ILHL

RMSE 10–20% 20–30% 20–30% 30–40% 30–40% >40%

Peak 
Period

Variable dccrit, ILHL, RainHrs dccrit, ILHL dccrit, ILHL dccrit, ILHL, RainHrs dccrit, ILHL, RainHrs dccrit, ILHL, RainHrs

RMSE <10% 10–20% 20–30% 20–30% 30–40% 30–40%

Midday Variable dccrit dccrit dccrit dccrit dccrit dccrit

RMSE <10% <10% 20–30% <10% 20–30% 30–40%

Weekday Variable dcaverage dcaverage, ILHL dcaverage dcaverage, ILHL dcaverage, ILHL dcaverage, ILHL

RMSE <10% 20–30% <10% 10–20% 30–40% >40%
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collected on 26 freeway segments in the Seattle metropolitan 
area. Table 1.5 shows the validation error (the percentage dif-
ference between the measured and the predicted values) for 
each roadway section for each validated model. Positive errors 
indicate that the model overpredicted the TTI (thus predict-
ing that the segment is less reliable than it actually is) and 
negative errors indicate that the model underpredicted the 
TTI (thus predicting that the segment is more reliable than it 
actually is).

The L03 team noted that the models tend to underpredict 
the weekday TTIs in the Seattle region and speculated that it 
may be due to the lack of a rain variable in the weekday mod-
els, which raises errors in regions like Seattle that experience 
a lot of rainfall. The data-poor model exhibits the same 
under prediction trend, particularly with the 95th-percentile 
equation. The L03 project team recommended further vali-
dation of the models to address these high errors.

Research Questions

To evaluate and enhance the L03 predictive models described 
above, the L33 project was guided by the following research 
questions:

•	 What are the right explanatory variables to use to predict 
travel time reliability?

•	 Is it possible to have single models that can be applied in all 
regions?

•	 What are the most useful measures for the predictive models 
to output?

•	 What is the right functional form for the reliability models?

Final Report Structure

Following this background chapter, the remainder of this final 
report is structured as follows:

•	 Chapter 2: Data describes the data sets used in the L03 model 
validation and L33 model enhancement and validation 
stages of this project

•	 Chapter 3: Existing Model Validation presents the validation 
results for the L03 data-rich and data-poor models

•	 Chapter 4: Enhanced Models and Application Guidelines 
presents the recalibration and new model results for the 
data-rich and data-poor models and discusses recommen-
dations for applying the models

This report also contains the following five appendices, 
each of which contains one of the work products of the L33 
project.

•	 Appendix A: Review of L03 and Related Models is a techni-
cal memorandum discussing the work performed in the 
SHRP 2 L03 project and other SHRP 2 Reliability projects 
that developed predictive models.

Table 1.4. Data-Poor Functional Form and RMSE by Model, Part 2

PctTrips 
OnTime10mph

PctTrips 
OnTime25mph

PctTrips 
OnTime50mph

PctTrips 
OnTime45mph

PctTrips 
OnTime30mph

Original Models Form exponential exponential exponential exponential exponential

RMSE <10% <10% 10–20% 10–20% <10%

Revised Models Form NA NA exponential exponential sigmoidal

RMSE na na na na na

Note: No calibration errors were presented for the L03 revised data-poor models; NA = not available; na = not applicable.

Table 1.3. Data-Poor Functional Form and RMSE by Model, Part 1

10th Median 80th 90th 95th

Original Models Form exponential exponential exponential exponential exponential

RMSE <10% <10% <10% <10% 10–20%

Revised Models Form natural log natural log natural log natural log natural log

RMSE na na na na na

Note: No calibration errors were presented for the L03 revised data-poor models; na = not applicable.
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Table 1.5. L03 Validation Errors

Roadway Section

Peak Period Weekday Data-Poor

Mean 80th 95th Mean 80th 95th 80th 95th

I-405 Bellevue northbound +30 to 40% Over +40% Over +40% Under +10% +10 to 20% +10 to 20% Under +10% +20 to 30%

I-405 Eastgate northbound +10 to 20% +10 to 20% +30 to 40% NA Under +10% Under +10% Under +10% +30 to 40%

I-405 Eastgate southbound -10 to 20% -10 to 20% Under -10% -10 to 20% -10 to 20% -10 to 20% Under +10% -20 to 30%

I-405 Kennydale southbound -10 to 20% -10 to 20% -10 to 20% -10 to 20% -30 to 40% -30 to 40% Under -10% -20 to 30%

I-405 Kirkland northbound Under +10% Under +10% +20 to 30% Under +10% Under +10% +20 to 30% +10 to 20% +30 to 40%

I-405 Kirkland southbound Under -10% Under +10% +10 to 20% Under -10% Under +10% +20 to 30% Under +10% +30 to 40%

I-405 North northbound Under +10% Under +10% +20 to 30% Under +10% Under +10% +10 to 20% Under +10% +20 to 30%

I-405 North southbound -30 to 40% Over -40% Over -40% Under +10% -10 to 20% -20 to 30% -10 to 20% Over -40%

I-405 South northbound -30 to 40% -30 to 40% -20 to 30% -20 to 30% Over -40% Over -40% -10 to 20% -20 to 30%

I-405 South southbound Under +10% Under +10% +10 to 20% +10 to 20% +20 to 30% +10 to 20% Under +10% +10 to 20%

I-5 Everett northbound Under +10% Under -10% -10 to 20% Under +10% Under +10% -30 to 40% +20 to 30% Over -40%

I-5 Everett southbound +20 to 30% +20 to 30% +30 to 40% Under +10% +10 to 20% +20 to 30% Under +10% Under +10%

I-5 Lynnwood northbound +10 to 20% +20 to 30% Under -10% Under +10% Under +10% -10 to 20% Under +10% +20 to 30%

I-5 Lynnwood southbound Under -10% Under -10% -10 to 20% Under -10% Under +10% -20 to 30% +10 to 20% -30 to 40%

I-5 South northbound +10 to 20% +20 to 30% +30 to 40% Under +10% +10 to 20% Under +10% +10 to 20% +30 to 40%

I-5 South southbound +10 to 20% Under +10% +20 to 30% Under +10% Under +10% +20 to 30% +10 to 20% +30 to 40%

I-5 Tukwila northbound +20 to 30% +10 to 20% +10 to 20% Under +10% Under +10% Under +10% Under +10% +20 to 30%

I-5 Tukwila southbound Over +40% Over +40% Over +40% Under +10% Under +10% +20 to 30% Under +10% Under +10%

I-90 Bellevue westbound +20 to 30% +30 to 40% +30 to 40% Under +10% Under +10% +10 to 20% +10 to 20% +20 to 30%

I-90 Bridge eastbound +10 to 20% Under +10% Under +10% Under +10% Under +10% +20 to 30% Under +10% +30 to 40%

I-90 Bridge westbound Under -10% -10 to 20% -10 to 20% Under -10% Under +10% -10 to 20% +10 to 20% -10 to 20%

I-90 Issaquah westbound +10 to 20% +10 to 20% +10 to 20% Under +10% Under +10% +10 to 20% Under +10% +20 to 30%

SR 167 Auburn northbound Under -10% Under -10% Under +10% Under -10% -10 to 20% +20 to 30% Under -10% -20 to 30%

SR 167 Auburn southbound -10 to 20% -20 to 30% -20 to 30% Under -10% -10 to 20% -30 to 40% Under +10% -20 to 30%

SR 167 Renton northbound Under +10% +20 to 30% -10 to 20% Under +10% +10 to 20% -20 to 30% Under +10% +20 to 30%

SR 167 Renton southbound Under +10% Under +10% -10 to 20% Under +10% Under +10% -10 to 20% Under +10% +20 to 30%

Note: NA = not available.
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•	 Appendix B: Validation Plan is a technical report outlining 
the data collection and analysis strategy for validating the 
L03 data-rich and data-poor models.

•	 Appendix C: Data-Rich Validation is a technical memoran-
dum containing detailed validation results for the data-rich 
models.

•	 Appendix D: Data-Poor Validation is a technical memo-
randum containing detailed validation results for the data-
poor models.

•	 Appendix E: Model Enhancements is a technical memo-
randum showing the results of the data-poor model reca-
libration and enhancement.

Reference
1. Federal Highway Administration, U.S. Department of Transpor-

tation. Traffic Congestion and Reliability: Trends and Advanced 
Strategies for Congestion Mitigation. http://www.ops.fhwa.dot 
.gov/congestion_report/chapter2.htm. Accessed on January 9, 2014.

http://www.ops.fhwa.dot.gov/congestion_report/chapter2.htm
http://www.ops.fhwa.dot.gov/congestion_report/chapter2.htm
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Sites

The L33 team calibrated and validated its models using urban 
freeway data collected in the following metropolitan areas:

•	 San Diego;
•	 San Francisco;
•	 Sacramento, California;
•	 Los Angeles;
•	 Minneapolis–Saint Paul, Minnesota;
•	 Spokane, Washington; and
•	 Salt Lake City, Utah.

Details about the study segments and data sets are pro-
vided in the L33 validation plan included in Appendix B. 
The San Diego, San Francisco Bay Area, Sacramento, and  
Los Angeles metropolitan regions (grouped together into a 
California data set), Salt Lake City, and Spokane data were 
collected from the 3-year period between January 1, 2010, and 
December 31, 2012. The Minnesota data were collected from 
the 3-year period between June 1, 2009, and May 31, 2012.

The L33 team selected these sites in part because their agen-
cies collect and archive continuous, high quality traffic data. 
These characteristics are also critical for L33 validation and 
enhancement activities. As such, this project used data col-
lected in many of the same locations as L03. The L33 project 
team ensured that the model validation performed in L33 does 
not use the same data collected during the same time frame on 
the same freeways segments as was used to calibrate or validate 
the models in L03. Because this is a critical requirement, the 
L33 team conducted a thorough review of the data set.

The roadway sections that were studied within each of these 
regions were selected in accordance with the application guide-
lines of the L03 data-rich and data-poor models through the 
following criteria:

•	 Length of around 5 mi (range from 2 to 10 mi)
•	 Good data quality over a year

•	 Monitored by point detectors with no more than an aver-
age spacing of ¾ mi, or monitored by automated vehicle 
identification (AVI) technologies at the section origin and 
destination

•	 No midsection freeway-to-freeway interchanges or bottle- 
necks

•	 Relative homogeneity in terms of traffic and geometric 
conditions

Processing

This section briefly describes the data processing that was 
performed to generate the dependent and independent vari-
ables for the validation of the data-rich and data-poor models. 
Further detail on these steps is provided in the L33 validation 
plan included in Appendix B.

Traffic Data

For the validation, traffic data is needed to calculate (1) the 
dependent TTI reliability measures; (2) the mean TTI inde-
pendent variable for the data-poor models; (3) the demand-
to-capacity ratios used as independent variables for some of 
the data-rich models; and (4) the peak hour and peak period 
time slice definitions.

Raw traffic data were extracted from the Performance 
Measurement System (PeMS) deployment databases for each 
study location. The raw data consisted of 5-min traffic flow, 
occupancy, and speed for each detector station along a roadway 
section. The following steps were taken to turn the raw data 
points into section-level TTI reliability statistics over a year:

1. Calculate 5-min vehicle miles traveled (VMT) and vehicle 
hours traveled (VHT) at each detector station (link) using 
the link’s volume, speed, and length (the distance halfway 
to the nearest neighboring stations in the upstream and 
downstream directions)

C h a P t e r  2

Data
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year is the 99th-percentile D/C ratio over all midday periods 
in the year. The average D/C ratio over the year is the mean of 
all the midday D/C ratios over the year.

Incident Lane-Hours Lost

The number of incident lane-hours lost on a roadway section 
over the year is an independent variable in some of the data-
rich models. Estimating this number for a roadway section 
requires two key pieces of information from each incident: 
(1) the number of lanes it blocked and (2) its duration. In data-
sets for which one or both of these variables were unavailable, 
they were estimated from the L03 final report equations based 
on the agency incident clearance policies and the presence of 
shoulders.

Hours of Precipitation Exceeding 0.05 in.

The number of hours of precipitation exceeding 0.05 in. on a 
roadway section over a year is an independent variable in some 
of the data-rich models. Hourly weather data from the National 
Weather Service (NWS) was used to compute the number of 
hours that had precipitation exceeding defined thresholds 
(ultimately, the number of hours where rainfall exceeded 
0.05 in. was included in the data-rich model).

Characteristics

Data-Rich Independent Variables

This section describes and evaluates the independence of the 
data-rich independent variables that were input into each 
model in order to predict travel time reliability.

Peak Hour

The distributions of the critical demand-to-capacity ratio, 
incident lane-hours lost, and hours of rainfall exceeding 
0.05 in., as well as some basic summary statistics for these 
variables, are shown in Figure 2.1. There is a fairly wide dis-
tribution of all of these variables, though no notable outliers.

Table 2.1 shows the correlation coefficients between the 
independent variables, and Figure 2.2 shows scatterplots illus-
trating these relationships. The critical demand-to-capacity 
ratio and the number of incident lane-hours lost exhibit the 
strongest, though still weak, linear relationship.

Peak Period

The distributions of the critical demand-to-capacity ratio, 
incident lane-hours lost, and hours of rainfall exceeding 
0.05 in., as well as some basic summary statistics for these 

2. Aggregate the link-level data to section-level 5-min VMT, 
VHT, space mean speed, TTI, and travel time

3. Exclude 5-min data points collected when fewer than 50% 
of the section’s detectors were not working

4. Group the 5-min section-level data into the peak hour, 
peak period, midday, and weekday time slices over an 
entire year, and calculate for each section-year-time slice 
combination the
•	 Mean TTI
•	 Percentile TTIs (10th, 50th, 80th, 95th, and 99th)
•	 On-time statistics [percentage of trips (VMT) made 

within 1.1x the median travel time and within 1.25x the 
median travel time]

•	 Failure statistics [percentage of trips (VMT)] with 
speeds less than 50 mph, 45 mph, and 30 mph

The peak hour and peak period time slices used in Step 4 
were calculated from the outputs of Step 3 as follows:

•	 Peak Hour: Identify the 60-min period on non-holiday 
weekdays with the lowest average speed. Each consecutive 
section speed must be less than or equal to 45 mph.

•	 Peak Period: Identify non-holiday, weekday time periods of 
at least 75 min during which the average section speeds are 
less than or equal to 45 mph.

Demand-to-Capacity Ratios

The following two forms of the demand-to-capacity (D/C) 
ratio were used as independent variables in the data-rich 
models:

•	 Critical demand-to-capacity ratio: The critical demand of a 
section is calculated as the highest 99th-percentile demand 
measured on a link on the segment during the given time 
period (peak hour or peak period) over a year.

•	 Average demand-to-capacity ratio: The average demand is 
calculated as the average demand measured on all links on 
the segment during the given time period (peak hour or 
peak period) over a year.

The capacity used in both ratios is the hourly capacity 
according to National Cooperative Highway Research Pro-
gram (NCHRP 387) methodologies. The demand is summed 
up over all 5-min periods in the time slice over a single day. 
Since only volume, not demand, can be directly measured by 
loop detectors, demand was computed using the methodology 
developed in L03 and summarized in Appendix B.

To give an example of this process, for a single day, the D/C 
ratio during the midday period is equal to the sum of all of 
the 5-min demands over the 3-hour midday period divided 
by the hourly capacity. The 99th-percentile D/C ratio over the 
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variables, are shown in Figure 2.3. As with the peak hour, each 
of the variables exhibits a wide distribution. This makes sense 
because the duration of the peak period varies from section 
to section, and as the peak period duration increases, the D/C 
ratio is certain to increase and the incident and rain terms are 
likely to increase.

D/C_crit

ILHL Rain

Figure 2.1. Independent variables summary, peak hour.

Table 2.1. Correlation 
Coefficients between 
Independent Variables,  
Peak Hour

D/Ccrit ILHL Rain

D/Ccrit 1 0.272 -0.14

ILHL 0.272 1 -0.21

Rain -0.14 -0.21 1

Table 2.2 shows the correlation coefficients between the 
independent variables, and Figure 2.4 shows scatterplots 
illustrating these relationships. The relationships between 
variables in the peak period are much stronger than they are for 
the peak hour. The relationship between the critical-demand-
to-capacity ratio and the incident lane-hours lost is particularly 
strong.

Midday

The distribution of the only independent variable in the midday 
models—the critical demand-to-capacity ratio—is shown in 
Figure 2.5. Most of the ratios are between 1 and 3.

Weekday

The distributions of the average demand-to-capacity ratio and 
the incident lane-hours lost, as well as some basic summary 
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Figure 2.2. Relationships between independent variables, peak hour.
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D/C_crit

ILHL Rain

Figure 2.3. Independent variables summary, peak period.

Table 2.2. Correlation 
Coefficients between 
Independent Variables, 
Peak Period

D/Ccrit ILHL Rain

D/Ccrit 1 0.917 0.637

ILHL 0.917 1 0.505

Rain 0.637 0.506 1

statistics for these variables, are shown in Figure 2.6. There are 
some potential outliers noticeable (in the incident lanes-hours 
lost distribution), which are around three times as high as 
the next-highest values. These were collected on a few of the 
Minneapolis roadway sections.

Figure 2.7 shows the scatterplot of the incident lane-hours 
lost against the average demand-to-capacity ratio. The linear 
relationship here is weak, with a correlation coefficient of 0.2.

Summary

Table 2.3 contains a summary of the correlation coefficients 
of the three independent variables for three time periods.
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Figure 2.4. Relationships between independent variables, peak hour.

D/C_crit

Figure 2.5. Independent variable summary, midday.
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D/C_avg

ILHL

Figure 2.6. Independent variables summary, weekday.
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Figure 2.7. Relationship between independent variables, weekday.

Table 2.3. Correlation Coefficients of Independent Variables

D/C ILHL Rain

Hour Period Weekday Hour Period Weekday Hour Period

D/C Hour 1 0.27 -0.14

Period 1 0.92 0.64

Weekday 1 0.20

ILHL Hour 0.28 1 -0.21

Period 0.92 1 0.51

Weekday 0.20 1

Rain Hour -0.14 -0.21 1

Period 0.64 0.51 1
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Overview

Following this overview section, which describes the metrics 
used to perform the validation, this chapter presents the vali-
dation results for the data-rich and the data-poor models. 
The complete results are included in Appendix C (Data-Rich 
Validation) and Appendix D (Data-Poor Validation).

The validation was performed by assessing the following 
two questions:

1. What is the model error?
2. Does the model meet the assumptions of generalized 

regression?

Model Error

The model error was quantified through the root mean 
square error (RMSE). The specific calculation of RMSE 
depends on the model form, so calculation details for the 
data-rich and data-poor models are contained in Appendix C 
and Appendix D.

Generalized Regression Model Assumptions

The following checks were performed to evaluate whether each 
model satisfied the assumptions of generalized regression:

Assessing whether each model adhered to a generalized 
regression model was performed quantitatively and qualita-
tively using (1) residual plots, to find any non-random patterns; 
(2) Student’s t-test, to evaluate whether the means of the 
residuals are statistically different from zero; (3) histograms, 
to visually assess whether residuals are normally distributed; 
and (4) the Shapiro-Wilk test, to statistically assess whether 
residuals are normally distributed. Each of these tools is 
described below.

Residual Plots

To satisfy regression assumptions, the plot of residuals versus 
the predicted values must show that (1) the variance of the resid-
uals is constant across all predicted values (homoscedastic) and 
(2) the mean of the residuals is constant across all predicted 
values (unbiased). This principal is illustrated in Figure 3.1 (1), 
which compares the ideal residual plot [unbiased and homo-
scedastic, in plot (a)] to other patterns. This comparison indi-
cates that the assumptions of regression are not being met.

Student’s t-Test

The one sample Student’s t-test can be used to determine if 
the mean of the residuals is significantly different from zero 
in a statistical sense, which tests for systematic bias. With an 
unbiased model, the difference should be statistically insig-
nificant. The t-value is calculated as

=
− µ0t

r

s n

where r– is the residual mean, s is the standard deviation of 
residuals, n is the sample size, and µ0 is the specific mean value 
for comparison, set here to be zero. To draw a conclusion, if the 
calculated t value is larger than some threshold ta (e.g., a = 5%) 
using a two-tailed t distribution table, the null hypothesis that 
the residuals have a mean of zero can be rejected with (1 - a) 
level of confidence. Or we say that the residual mean is signifi-
cantly different from zero at a level of probability. If the cor-
responding p value is used to draw a conclusion, it means that 
if the null hypothesis were correct, then we would expect to 
obtain such a large t value on at most p percentage of occasions. 
The data-poor validation used a confidence level of 95%, and 
the data-rich validation used a confidence level of 90%.

C h a p t e r  3

Existing Model Validation
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50th-percentile, and 10th-percentile TTI, resulting in a total 
of 24 data models to be validated. The independent variables 
used in each model were described in Chapter 2, and the equa-
tions for each model are contained in Appendix C. Table 3.1 
shows the total number of freeway section-years for which 
data was available within each region and time slice; the cells 

Shapiro-Wilk Normality Test

The Shapiro-Wilk test was used in the data-rich validation to 
test whether the distribution of residuals is significantly dif-
ferent from the normal distribution in a statistical sense. The 
null hypothesis in this test states that the residuals are nor-
mally distributed. To draw a conclusion, if the p-value is less 
than a threshold, the null hypothesis that the residuals are 
normally distributed can be rejected with (1 - a) level of 
confidence. The threshold used here is a = 10%, which cor-
responds to a confidence level of 90%. The question of normal-
ity was also visually investigated using normality plots and  
residual histograms.

Data-rich Validation

Process

There are six L03 data-rich models per analysis time slice (peak 
period, peak hour, weekday, and midday) to predict the mean 
TTI and the 99th-percentile, 95th-percentile, 80th-percentile, 

x = Predicted Value 

y 
=

 R
es

id
ua

l

(a) Unbiased and homoscedastic. The residuals average to zero in each thin vertical strip
and the standard deviation is the same all across the plot. 

(b) Biased and homoscedastic. The residuals show a linear pattern, probably due to a 
lurking variable not included in the experiment.

(c) Biased and homoscedastic. The residuals show a quadratic pattern, possibly because of 
a nonlinear relationship. Sometimes a variable transform will eliminate the bias. 

(d) Unbiased and heteroscedastic. The standard deviation is small to the left of the plot and 
large to the right: the residuals are heteroscedastic.

(e) Biased and heteroscedastic. The pattern is linear. 

(f) Biased and heteroscedastic. The pattern is quadratic. 

Figure 3.1. Residual plot examples.

Table 3.1. Data-Rich Validation Freeway 
Section Sample Sizes

Region
Peak 

Period
Peak 
Hour Midday Weekday

California 43 43 140 142

Minnesota 19 25  60  60

Salt Lake City  3  4  32  30

City of Spokane  0  0   9  11

All Data 65 72 241 243

Note: Bold numbers = regions and time periods used in the data-rich 
validation.
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in bold indicate regions and time periods used in the data-
rich validation. In the Salt Lake City and Spokane regions, 
very few of the roadway sections experienced traffic condi-
tions that qualified under the peak period and peak hour 
definitions established in L03. Due to these small sample sizes, 
these region time periods were excluded from the validation 
results.

Results

Table 3.2 presents the data-rich root mean square errors 
(RMSEs) measured for each time period, model, and region. 
The main conclusion of the data-rich validation is that the 
average prediction errors measured by the RMSE for each 
model are not acceptable across many of the regions.

From a regional perspective, for all time slices except  
the weekday time period, the RMSEs are the highest when 
the models are applied to the California data set. During the 
weekday time period, the RMSEs are the highest when the 
models are applied to the Minnesota data set, and the lowest 
when applied to the Salt Lake City data set.

When the RMSEs are interpreted by the predicted measure, 
we see that, across all of the time periods, the highest RMSEs 
occur for the prediction of the 99th-percentile TTI. The 
RMSEs tend to decrease as the predicted TTI measure lowers 
(i.e., the RMSEs for the 50th-percentile models are lower than 
for the 80th-percentile models, which are lower than for the 
95th-percentile models, and so on). This is to be expected, as 
there is naturally more variability among the validation data 
sections at the higher moments of the travel time distribution.

Table 3.2. Summary of Data-Rich RMSE Values by Model and Region

Model Details RMSE Value by Region

Analysis Time Slice Model All Data CA MN
Salt Lake 

City

Peak period Mean TTI 96.94% 127.55% 21.59% na

99th Percentile 403.44% 607.76% 63.67% na

95th Percentile 251.95% 359.19% 45.85% na

80th Percentile 151.95% 206.54% 30.95% na

50th Percentile 89.55% 116.63% 23.15% na

10th Percentile 12.13% 14.43% 6.23% na

Peak hour Mean TTI 25.45% 26.97% 24.68% na

99th Percentile 50.74% 52.78% 47.46% na

95th Percentile 38.38% 40.19% 37.27% na

80th Percentile 35.13% 36.89% 34.06% na

50th Percentile 28.85% 32.41% 24.22% na

10th Percentile 18.50% 22.24% 12.14% na

Midday Mean TTI 6.24% 7.57% 4.07% 3.52%

99th Percentile 32.32% 34.95% 25.86% 34.01%

95th Percentile 15.62% 17.29% 14.01% 12.55%

80th Percentile 8.99% 10.86% 6.61% 3.60%

50th Percentile 5.43% 6.93% 2.09% 2.08%

10th Percentile 1.81% 2.20% 0.80% 1.33%

Weekday Mean TTI 19.74% 12.81% 35.99% 5.95%

99th Percentile 72.91% 50.04% 141.72% 30.87%

95th Percentile 83.82% 40.46% 197.82% 22.85%

80th Percentile 29.28% 14.84% 59.43% 5.75%

50th Percentile 4.68% 5.92% 1.71% 2.16%

10th Percentile 0.81% 0.74% 0.48% 1.30%

Note: na = not applicable.
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From a time period perspective, the highest RMSEs are seen 
during the peak period, which is defined specifically for each 
section to cover time periods of at least 75 min, during which 
the average speeds fall below 45 mph. The RMSEs are lower, 
though still high, for the peak hour models. Both the peak 
hour and peak period models are predicted by the critical 
D/C ratio, the incident lane-hours lost and, for some of the 
models, the precipitation factor. The RMSEs are the lowest 
during the midday period (11:00 a.m. to 2:00 p.m.), during 
which congestion tends to be minimal. The midday period TTIs 
are predicted only by the critical D/C ratio. RMSEs during the 
weekday period (predicted by the average D/C ratio and, for 
some of the models, the incident lane-hours lost), are slightly 
higher than they are for the midday period.

Results also indicate that the models violate many of the 
assumptions of generalized regression and thus have room for 
enhancement. Generally, a good regression model is expected 
to present randomly scattered residuals without obvious trends. 
However, increasing trends and other non-random patterns 
were observed in the residual plots of many of the models. 
This indicates that the models may not be able to sufficiently 
describe the relationship between the independent variables 
and the dependent variable. Table 3.3 summarizes the results 
of the t-test and normality test for each model, as applied to 
the AllData set. In the majority of cases, the null hypotheses 
for these tests were able to be rejected with 90% confidence, 
particularly in all but the peak hour time periods.

Data-poor Validation

Process

The seven L03 data-poor models validated in this task were

1. 95th-percentile TTI = 1 + 3.6700  ln(meanTTI)
2. 90th-percentile TTI = 1 + 2.7809  ln(meanTTI)
3. 80th-percentile TTI = 1 + 2.1406  ln(meanTTI)
4. Standard deviation of TTI = 0.71  (meanTTI - 1)0.56

5. PctTripsOnTime50mph = e(-0.20570[meanTTI-1])

6. PctTripsOnTime45mph = e(-1.5115[meanTTI-1])

7. PctTripsOnTime30mph  
 = 0.333 + [0.672/(1 + e(5.0366[meanTTI-1.8256]))]

Validation was performed using data collected on week-
days during the midday period (11:00 a.m. to 2:00 p.m.) and 
the peak period (a continuous time period of at least 75 min 
during which the space mean speed is less than 45 mph). This 
is consistent with the time periods that L03 used to calibrate 
the data-poor models.

Table 3.4 shows the number of freeway section-year data 
points available for validation within each region. As with the 
data-rich validation, the number of peak period data points 
available in Salt Lake City and Spokane were too few to be 
used in the analysis.

Table 3.3. Data-Rich Statistical Test Results  
by Model, All Regions

Model Details Statistical Test Results

Analysis  
Time Slice Model t-Test Wilkes-Barr

Peak period Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Reject Reject

10th Percentile Reject Reject

Peak hour Mean TTI Cannot Reject Cannot Reject

99th Percentile Cannot Reject Reject

95th Percentile Cannot Reject Cannot Reject

80th Percentile Reject Cannot Reject

50th Percentile Reject Cannot Reject

10th Percentile Cannot Reject Reject

Midday Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Cannot Reject Reject

10th Percentile Reject Reject

Weekday Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Cannot Reject Reject

10th Percentile Reject Reject

Table 3.4. Data-Poor Validation Freeway Section 
Sample Sizes

Time Period CA MN
Salt Lake 

City Spokane All Data

Midday 144 60 42 12 258

Peak Period  43 19  3  0  65

Total 187 79 45 12 323
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Results

Table 3.5 summarizes the root mean square error estimates 
for each model on all sections (All Data column) and by 
region. Overall, the RMSEs are generally acceptable for most 
of the models and regions. The model error is larger for the 
prediction of higher moments of the TTI distribution. This 
makes sense because the 95th-percentile TTIs are likely asso-
ciated with very rare events (like a major incident or bad 
weather). We would expect these TTIs to vary greatly from 
section to section, making them harder to accurately model 
based solely on the mean TTI.

The main concern with the data-poor models following the 
validation effort is that they violate many of the assumptions 
of generalized regression. The t-test results of the AllData set 
for each model are shown in Table 3.6; for nearly all of the 
models, it was possible to reject the null hypothesis of zero 
residual mean with 95% confidence. The systematic bias  
of overpredicting or underpredicting the residuals varied 
regionally, with the models tending to show better-than-
measured reliability measures in Minnesota and poorer-than- 
measured reliability measures in California. This lends support 

for building regional models rather than cross-sectional 
models.

reference
1. DePaul University. Linear Regression. http://condor.depaul.edu/

sjost/it223/documents/regress.htm. Accessed February 15, 2014.

Table 3.5. Summary of Data-Poor RMSE Values  
by Model and Region

Model

RMSE Value by Region

All Data CA MN
Salt Lake 

City Spokane

95th Percentile 0.1820 0.2064 0.1716 0.0833 0.0688

90th Percentile 0.1189 0.1187 0.1502 0.0483 0.0604

80th Percentile 0.0684 0.0660 0.0896 0.0290 0.0447

Standard Deviation 0.0855 0.0839 0.1028 0.0586 0.0672

PctTripsOnTime50mph 0.0784 0.0891 0.0617 0.0552 0.0721

PctTripsOnTime45mph 0.0602 0.0681 0.0480 0.0433 0.0553

PctTripsOnTime30mph 0.0254 0.0247 0.0329 0.0134 0.0065

Table 3.6. Data-Poor t-Test 
Results by Model, All Regions

Model t-Test Results

95th Percentile Reject

90th Percentile Reject

80th Percentile Reject

Standard Deviation Reject

PctTripsOnTime50mph Reject

PctTripsOnTime45mph Reject

PctTripsOnTime30mph Cannot Reject

http://condor.depaul.edu/sjost/it223/documents/regress.htm
http://condor.depaul.edu/sjost/it223/documents/regress.htm
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Overview

Enhancement was explored for the data-rich models, but no 
suitable enhancements resulting in performance improve-
ments were found.

For the data-poor enhancement, the original L03 models 
were recalibrated using data collected in the Los Angeles, 
San Diego, Sacramento, San Francisco, and Minneapolis 
regions. Additionally, the research team explored the perfor-
mance of three new model forms to predict the 95th-, 90th-, 
and 80th-percentile TTIs:

1. A one-parameter power model (y = xb)
2. A two-parameter power model (y = a × xb)
3. A two-parameter polynomial model (y = a × x + b × x2)

New models were explored for the 95th-, 90th-, and 80th-
percentile models because they exhibited the worst perfor-
mance in the validation assessment.

The results of the recalibration were compared with the 
performance of the three new model forms. Overall, the team 
found that the error values (measured in mean square error) 
for the recalibration and the new models were similar 95th- and 
90th-percentile TTI predictions. For the 80th-percentile TTI 
equation, the mean square error (MSE) of the new models was 
approximately half that of the recalibrated model. All of the 
new models exhibited a better adherence to the assumptions 
of regression than the original model form.

In this chapter, the results section summarizes the results 
of the enhancement assessment and documents the equation 
outputs. The recommendations section discusses application 
guidelines for using the recommended models.

Results

Models

The models shown in Table 4.1 were developed from the All-
Data set (containing data from the regions in California and 
the Minneapolis region). Further discussion of these equa-
tions, as well as the equations calibrated specifically to the 
California regions and the Minneapolis region, are included 
in Appendix E.

Performance

The performance of the recalibrated and new models was 
evaluated through consideration of the model statistics 
(mean square error and F-test results) and an assessment of 
how well the models meet the assumptions of regression. The 
details of the evaluation are presented in Appendix E in the 
form of model statistics, fit plots, observed versus predicted 
value plots, residuals versus predicted value plots, outlier and 
leverage plots, residual histograms, and normality plots.

Table 4.2 shows the mean square error results for the 
recalibrated and new models. In terms of MSE, the new models 
show the most significant improvement over the recalibrated 
model for the 80th-percentile TTI. The MSEs between the 
recalibrated and new models for the 95th- and 90th-percentile 
TTI predictions are comparable.

All of the recalibrated and new models satisfied the F-test, 
indicating overall validity. As seen in the residual versus pre-
dicted value plots, all of the new models exhibited improved 
residual patterns over the recalibrated L03 models. The new 
models still exhibited some issues with non-constant variance 
and residuals that are not perfectly normally distributed. As 
with the error, the best improvements in the residual patterns 
were seen for the 80th-percentile TTI model.

C h a p t e R  4

Enhanced Models and Application Guidelines
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Table 4.1. Recalibrated and New Data-Poor Models

Model Form

95th-Percentile TTI Recalibration 95th-percentile TTIAllData = 1 + 3.4201ln(meanTTI)

1-param power 95th-percentile TTIAllData = meanTTI1.9566

2-param power 95th-percentile TTIAllData = 1.0406 ∗ meanTTI1.8821

2-param polynomial 95th-percentile TTIAllData = 0.1494 ∗ meanTTI + 0.8902 ∗ meanTTI2

90th-Percentile TTI Recalibration 90th-percentile TTIAllData = 1 + 2.8189 ∗ ln(meanTTI)

1-param power 90th-percentile TTIAllData = meanTTI1.7324

2-param power 90th-percentile TTIAllData = 1.0099 ∗ meanTTI1.7137

2-param polynomial 90th-percentile TTIAllData = 0.3528 ∗ meanTTI + 0.6591 ∗ meanTTI2

80th-Percentile TTI Recalibration 80th-percentile TTIAllData = 1 + 2.1598 ∗ ln(meanTTI)

1-param power 80th-percentile TTIAllData = meanTTI1.4448

2-param power 80th-percentile TTIAllData = 0.9943 ∗ meanTTI1.4559

2-param polynomial 80th-percentile TTIAllData = 0.6166 ∗ meanTTI + 0.3809 ∗ meanTTI2

Standard Deviation TTI Recalibration StdDevTTIAllData = 0.7775 ∗ (meanTTI - 1)0.6810

PctTripsOnTime50mph Recalibration PctOnTimeTrip50mphAllData = e-2.0293∗[meanTTI-1]

PctTripsOnTime45mph Recalibration PctOnTimeTrip45mphAllData = e-1.4874∗[meanTTI-1]

PctTripsOnTime30mph Recalibration PctOnTimeTrip30mphAllData = 0.3401 + 0.6803
1 exp 4.5026 meanTTI 1.7890[ ]( )+ −p

Table 4.2. Data-Poor Enhancement Mean Square Error

Model Form

MSE

All Data CA MN

95th Percentile Recalibration y = 1 + a + ln(x) 0.0277 0.0255 0.0234

1-param power y = xb 0.0300 0.0273 0.0408

2-param power y = a × xb 0.0286 0.0264 0.0345

2-param polynomial y = a × x + b × x2 0.0289 0.0268 0.0352

90th Percentile Recalibration y = 1 + a + ln(x) 0.0137 0.0118 0.0110

1-param power y = xb 0.0122 0.0118 0.0151

2-param power y = a × xb 0.0121 0.0118 0.0144

2-param polynomial y = a × x + b × x2 0.0125 0.0121 0.0153

80th Percentile Recalibration y = 1 + a + ln(x) 0.00469 0.00410 0.00506

1-param power y = xb 0.00239 0.00178 0.00384

2-param power y = a × xb 0.00237 0.00176 0.00389

2-param polynomial y = a × x + b × x2 0.00245 0.00179 0.00436

Standard Deviation TTI Recalibrationa y = a × (x - 1)b 0.00668 0.00630 0.00364

PctTripsOnTime50mph Recalibrationa y = ea(x - 1) 0.00616 0.00765 0.00224

PctTripsOnTime45mph Recalibrationa y = ea(x - 1) 0.00363 0.00451 0.00123

PctTripsOnTime30mph Recalibrationa y = a + (b - a)/{1 + exp[c p (x - d )]} 0.00053 0.00050 0.00031

aThe recalibration for the 95th-percentile, 90th-percentile, and 80th-percentile models was performed following removal of two data points 
identified as outliers. The rest of the measures were recalibrated using all data points.
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2. The new models allow for a consistent model form between 
different percentile TTI measures.

3. Since the variance of travel times tends to increase with 
the mean travel time, reliability model curves should show 
an increasing pattern at an increasing rate. The new models 
satisfy this characteristic in a way that the original L03 
data-poor models do not.

application Guidelines

The research team recommends that the SHRP 2 program 
adopt the new L33 models. This recommendation is based on 
the following reasons:

1. The residual by predicted value plot shows improvement 
in the shape and in the balance of scatter around the origin, 
indicating that the new models better satisfy the assump-
tions of regression.
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Purpose

The purpose of this background technical memorandum, the 
deliverable for Task 1 of the second Strategic Highway Research 
Program (SHRP 2) L33 project, is to identify important find-
ings and lessons learned that will help validate and extend the 
L03 predictive reliability models. To meet this objective, follow-
ing this introduction the document is divided into four main 
sections. The first section conducts a review of SHRP 2 L03, 
including the modeling concept, data collection and processing 
procedures, and calibration and validation results. While the 
L33 research team had knowledge of the L03 project before con-
ducting this literature survey, the team felt that it was critical to 
fully document the major components of the L03 process in 
order to identify opportunities for enhancement in data and 
modeling-related techniques. The second section conducts a 
survey of other predictive reliability models developed through 
the SHRP 2 Reliability program. The third section presents 
other reliability research conducted through SHRP 2 and other 
initiatives that can provide value to the L33 process. The final 
conclusions section summarizes the lessons learned from the 
background material for consideration in the L33 data collec-
tion, model validation, and model enhancement tasks.

Review of SHRP 2 L03

Overview

The purpose of the SHRP 2 L03 project was to develop ana-
lytical procedures to determine the impacts of reliability 
mitigation strategies. The project team explored this issue 
through the following analyses:

•	 Congestion by Source. This part of the project used data 
collected in Seattle to assess methodologies for assigning 
delay to the causes of congestion.

•	 Before/After Studies. The project team identified 17 improve-
ments, categorized into the following, that could be analyzed 

with the project’s continuously collected traffic data. These 
before/after reliability metrics were used to produce reliabil-
ity adjustment factors that agencies can apply to various 
improvement scenarios to estimate the impact to travel time 
reliability.
44 Ramp metering;
44 Freeway service patrol implementation;
44 Bottleneck improvement;
44 General capacity increases;
44 Aggressive incident clearance program; and
44 High occupancy/toll (HOT) lane conversion.

•	 Cross-Sectional Statistical Modeling. Because only a limited 
number of before/after studies were observable in the proj-
ect data sets, this portion of the project developed macro-
scale cross-sectional models that predict the overall travel 
time characteristics of a highway section. Two model forms 
were developed: data-rich and data-poor. These models are 
described and assessed in further sections of this appendix.

The remainder of this L03 project overview details the cross-
sectional statistical modeling that ultimately produced the data-
rich and data-poor models that will be validated and enhanced 
in the L33 project. It explains the modeling concept, the data 
collection and data processing methodologies used to generate 
travel time reliability statistics and explanatory factors, the esti-
mation of independent variables, the final analysis data set, the 
model calibration and validation results, and the application 
guidelines. The summary concludes with a list of recommenda-
tions suggested by the L03 project team for further analysis.

Modeling Concept

The Phase 1 report of the L03 project proposed two model 
forms to focus on in the remainder of the project:

1. “A detailed deterministic model that uses all of the data being  
collected to a maximum degree (Data-Rich Model)”; and

A P P e n d i x  A

Review of L03 and Related Models
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2. “A simpler model based on the fact that many of the appli-
cations [Highway Capacity Manual (HCM) and travel 
demand forecasting models] work in an environment 
with limited data (Data-Poor Model).”

Figure A.1 shows the conceptual form of the data-rich 
model, which is composed of tiers of causal mechanisms that 
influence each other and, ultimately, travel time reliability. At 
a first level, the model conceives travel time reliability as a 
function of (1) the number of lanes; (2) the demand-to-
capacity ratio; (3) primary incident capacity-hours lost;  
(4) secondary incident capacity-hours lost; (5) work zone 
capacity-hours lost; (6) weather factors; (7) traffic fluctua-
tion; (8) active control; and (9) opposite direction incident-
hours. All variables in the first tier, except for the number of 
lanes, are functions of further explanatory variables. For 
example, work zone capacity-hours lost is a function of lane-
hours lost and shoulder-hours lost, which are functions of the 
work zone type and the work zone duration (which is a func-
tion of an agency’s work zone policy). This model form allows 
high-level variables to be estimated from roadway character-
istics and agency operational policies, which gives the model 
the power to estimate reliability improvements from capacity 
and demand-related interventions.

The data-poor model was first envisioned to take advan-
tage of commonly available independent variables (such as 
annual collisions per million, vehicle miles traveled, speed 
limit, and yearly demand profiles). However, exploratory 
analysis showed promising relationships between the mean 
travel time and all selected reliability metrics. Because the 
mean travel time is a ready output from planning and opera-
tional tools such as travel demand and simulation models, 
this relationship became the focus of the data-poor model 
development.

Data Collection

The L03 project team developed a site selection design plan 
to collect data in metropolitan areas and along segments 
that meet a broad range of different criteria. These criteria 
are shown in Table A.1. Ultimately the project team elected 
to collect data in eight metropolitan areas that had mature 
data collection programs that could be leveraged in this 
project: (1) Atlanta, Georgia; (2) Houston, Texas; (3) Jackson-
ville, Florida; (4) Los Angeles, California; (5) Minneapolis, 
Minnesota; (6) San Diego, California; (7) San Francisco, 
California; and (8) Seattle, Washington. Details of these 
metropolitan areas and the types of data collected are shown 
in Table A.2.

The remainder of this section describes the data collection 
process for the key types of data collected in L03: (1) traffic, 
(2) incidents and work zones, (3) weather, and (4) capacity.

Traffic Data

Urban freeway traffic data were largely assembled from traffic 
management centers (TMCs) that have a history of main-
taining quality traffic data. All of the study sections outside of 
Houston were monitored by fixed-point detectors that report 
volume as well as occupancy and/or speed. In Houston, the 
research team collected travel times from toll tag matches. In 
the San Francisco Bay area, data were collected from fixed-
point sensors and toll tag matches.

A key piece of the traffic data collection was to select the 
segments to monitor and model. The L03 Phase 2 report 
states that “based on previous analyses conducted by the 
research team, such as those for the Federal Highway Admin-
istration’s (FHWA’s) Mobility Monitoring Program, the sec-
tion length for urban freeways has generally been set at a length 
between two to five miles.”

Figure A.2 shows the distribution of segment lengths 
studied in the L03 project. The segments had an average 
length of 5 miles, though some much longer segments were 
selected for the before-and-after analysis. Appendix G of 
the L03 final report states that sections should have the fol-
lowing characteristics:

1. Be relatively homogeneous in terms of traffic and geometric 
conditions;

2. Represent portions of trips taken by travelers; and
3. Have no mid-section freeway-to-freeway interchanges.

Incidents and Work Zones

For most sites, incident and work zone data were obtained 
from the private vendor Traffic.com. Traffic.com gathers inci-
dent data from a variety of sources and standardizes them 
into information on traffic incidents, special events, con-
struction, severe weather, and other potentially traffic-influ-
encing events. Each incident is either reported or confirmed 
and indicates the number of travel lanes blocked and the inci-
dent start and end time.

In some regions (Jacksonville, Atlanta, and Seattle), 
TMC-reported incidents were used as the primary incident 
data set.

Weather

Hourly weather data from weather stations in the study 
region were obtained from the National Climatic Data Center 
(NCDC) of the National Oceanic and Atmospheric Adminis-
tration (NOAA). The hourly data contained information on 
the sky condition, visibility, obstructions to visibility, type 
and intensity of precipitation, precipitation accumulation, 
temperature, and wind characteristics.

http://www.Traffic.com
http://www.Traffic.com
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Figure A.1. Data-rich modeling concept.
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Table A.1. Site Selection Design Criteria

Factors Levels

Highway Type

Urban Rural

Freeways
Signalized 
Arterials Freeways

Area size Small, medium • •

Large, very large • •

Base congestion Low (AADT/Ca < 7) •

Moderate (AADT/C ~ 9) • •

Severe (AADT/C ~ 12) • •

Number of lanes 4 • • •

6 • •

8+ • •

Base crash rateb Low • • •

High • • •

Trucks (%) <10% • • •

>10% • • •

Traffic variabilityc Low • • •

High • • •

Traffic signal density <2/mile •

2–5/mile •

>5/mile •

Proximity to major bottleneck <1 mile downstream from segment •

>5 miles downstream from segment •

Improvement type Incident management • • •

Work zone management • • •

Weather managementd • •

Traffic device controle • •

Demand management • •

Special event management • •

Traveler information • • •

Physical expansion and/or changes • • •

a AADT/C is annual average daily traffic-to-capacity ratio (specifically, two-way hourly capacity).
b Categories were based on comparison to each state’s average crash rate by type of highway.
c For urban highways, traffic variability was determined based on the coefficient of variation (CV) of weekday peak period travel. For 
rural highways, the CV of the 24-hour volume was used.
d Weather management depended on what was being covered in other research activities, such as FHWA’s Road Weather 
Research and Development Program.
e Ramp meter control on freeways; signal control on signalized arterials.
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Table A.2. SHRP 2 L03 Study Sites

City Number of Sections Traffic Data Incident/Work Zone Data Weather Data

Houston 13 Toll Tag Traffic.com NCDC/NOAA

Minneapolis 16 Fixed Point Traffic.com NCDC/NOAA

Los Angeles 3 Fixed Point Traffic.com NCDC/NOAA

San Francisco Bay 4 Toll Tag/Fixed Point Traffic.com NCDC/NOAA

San Diego 6 Fixed Point Traffic.com NCDC/NOAA

Atlanta 10 Fixed Point, AirSage GDOT (NaviGAtor) NCDC/NOAA

Jacksonville 8 Fixed Point TMC NCDC/NOAA

Seattle 21 Fixed Point TMC & CAD NCDC/NOAA

Capacity

The project team also collected information to calculate the 
capacity of study segments. Geometric data were obtained 
from satellite photographs and 2007 Highway Performance 
Monitoring data. Relevant operating and improvement 
data were obtained from the state departments of transpor-
tation (DOTs).

Incident Management Activities

Incident management information was collected from the 
traffic incident management (TIM) self-assessment proce-
dure, developed by the FHWA to capture the sophistication 
of incident management policies for modeling. The process 
results in a single numeric score.

The TIM self-assessment score ended up being available in 
only a few of the study locations, so it was ultimately not used 
in the statistical models.

Data Processing

Data were assembled for 81 urban freeway study segments. The 
ultimate statistical analysis data set summarizes reliability met-
rics for every study section over an entire year by peak hour, 
peak period, midday (weekdays 11:00 a.m. to 3:00 p.m.), week-
day (all hours), and weekend and holiday. It consists of infor-
mation in the categories listed in Table A.3 (intended to be 
illustrative, not exhaustive).

A number of computational steps were required to trans-
form the raw data sets into the final cross-sectional analysis 

Figure A.2. Distribution of L03 segment lengths.

http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
http://www.Traffic.com
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Table A.3. L03 Final Analysis Data Set

Category Sample Measures

Reliability Metrics • Mean, standard deviation, median, mode, minimum, and percentile travel 
times and travel time indices (TTIs)

• Buffer indices, planning time index, skew statistics, and misery index
• On-time percentages

Area Operations Characteristics • Number of service patrol trucks
• Service patrol trucks per mile
• Quick clearance law?
• Number of ramp meters, dynamic message signs, and closed-circuit tele-

visions (CCTVs)

Service Patrols • Number of service patrol trucks covering section
• Percentage of time periods when trucks are active

Capacity and Volume Characteristics • Start and end times of peak hour and peak period
• Calculated and imputed vehicle miles traveled
• Average of demand-to-capacity ratio on all section links
• Highest demand-to-capacity ratio of all links on the section

Incident Characteristics • Number of incidents
• Incident rate per 100 million vehicle miles
• Incident lane-hours lost
• Incident shoulder-hours lost
• Mean, standard deviation, and 95th percentile of incident duration

Event Characteristics • Number of work zones
• Work zone lane-hours lost
• Work zone shoulder-hours lost
• Mean, standard deviation, and 95th percentile of work zone duration

Weather Characteristics • Number of hours with precipitation amounts exceeding various thresholds
• Number of hours with measurable snow
• Number of hours with frozen precipitation
• Number of hours with fog

data set listed in Table A.3. The key steps described in this 
section are (1) quality control, (2) calculating speed, (3) cal-
culating the travel time index, (4) defining the peak hour and 
peak period, (5) calculating demand in oversaturated condi-
tions, and (6) associating incidents with segments.

Quality Control

The L03 final report states, “The processing began with 
quality control of the data as received from the TMCs. The 
data quality checks used were those developed for FHWA.” 
The FHWA report cited is Quality Control Procedures for 
Archived Operations Traffic Data: Synthesis of Practice and 
Recommendations: Final Report (Texas Transportation Insti-
tute 2007).

Calculating Speed

The calculation of speed is a necessary processing step for 
data collected by single loop detectors. The L03 team did not 

have to do any of this processing because all of the collected 
data already supplied speeds that were either directly mea-
sured by the detector or were estimated in an upstream pro-
cessing module. For example, in the case of the San Francisco, 
Los Angeles, and San Diego sites, traffic data were obtained 
from the Freeway Performance Measurement System (PeMS), 
which computes speeds based on 5-min measurements of 
volume and occupancy using a lane-, day of week-, and time-
of-day specific g-factor (estimate of the average vehicle length).

Calculating Travel Time Index

All collected detector data were first aggregated to the 5-min 
level. At the 5-min level, volume and speed data were spatially 
aggregated across all lanes in a given direction then turned 
into vehicle miles traveled (VMT) and vehicle hours traveled 
(VHT), where

•	 VMT = volume  detector zone length; and
•	 VHT = VMT/(Min(FreeFlowSpeed,Speed)).
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The detector zone length spans the distance between the 
current detector and halfway to its nearest neighboring detec-
tors in the upstream and downstream directions.

When aggregating to the section level, VMT and VHT were 
marked as missing if less than half of the detectors reported 
valid data for each of the 5-min periods. Otherwise, VMT and 
VHT were summed across all detectors on the segment, 
weighting by segment length. From these 5-min, segment 
VMT and VHT, TTI was computed through the following 
equations:

•	 SpaceMeanSpeed = VMT/VHT;
•	 TravelRate = 1/SpaceMeanSpeed; and
•	 TTI = MAX(1.0,[TravelRate/(1/FreeFlowSpeed)]).

In L03, the urban freeway free-flow speed was set to 60 mph. 
Under this computational framework, the TTI can never be 
lower than 1. The ultimate outputs of this processing are 
5-min TTIs by segment.

Defining Peak Hour and Peak Period

Both the data-rich and data-poor models were structured to 
predict reliability within the peak hour, peak period, midday, 
and weekend time periods. Of these time periods, the peak 
hour and peak period are allowed to vary from segment to 
segment.

L03 defined the peak hour as the continuous 60-min period 
during which the space mean speed is less than 45 mph. For 
segments where this condition occurs for longer than 60 min, 

the peak hour is selected by comparing the following criteria 
among adjacent 60-min periods:

•	 Low space mean speed;
•	 High vehicle hours of travel; and
•	 High vehicle miles of travel.

Ultimately, the analyst selects the peak hour based on com-
paring observed data with local knowledge on conditions.

The peak period is defined as a continuous time period of 
at least 75 min during which the space mean speed is less than 
45 mph. The distribution of the durations of the peak periods 
for the L03 segments is shown in Figure A.3.

Calculating Demand in Oversaturated Conditions

Demand is a critical explanatory variable in the L03 models. 
Since roadway detectors measure volume not demand, the 
L03 research team created a methodology for computing the 
demand during the oversaturated conditions that all selected 
study corridors experience during the peak hour and peak 
period.

The methodology takes inputs of 5-min link volumes and 
speeds. For any 5-min speed that falls below a defined thresh-
old (35, 40, or 45 mph), the link is assumed to be in conges-
tion, and the measured volume is not considered representative 
of the demand. Single 5-min periods when the speed increases 
above the defined threshold then decreases below the thresh-
old in the subsequent 5-min period are also assumed to be 
congested.

Figure A.3. L03 freeway segment peak period duration distributions.
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Once the congested time period has been defined, it is split 
into two halves. The demand in the first half of congestion is 
assumed to be equal to the average volume measured in the 
two 5-min periods before the start of congestion. The demand 
in the second half of congestion is set such that the cumula-
tive volume measured over the congested period is equal to 
the estimated cumulative demand. An illustration of the con-
gestion definition methodology, applied to single loop detec-
tor in San Diego, is shown in Figure A.4.

The L03 final report states that the two 5-min periods after 
the termination of congestion need to be checked to ensure that 
the estimated demand curve fits smoothly to the observed 
cumulative volume curve. Additionally, the observed 5-min 
volume should not be significantly higher than the estimated 
demand for the second half of congestion. If necessary, the con-
gested period can be extended to ensure a smooth transition. 
The importance of these steps is illustrated in Figure A.5, which 
shows the application of the demand-estimation process on a 
single day at six vehicle detector stations (VDSs) in Orange 
County, California. For VDSs 1201292 and 1202105, the esti-
mation process appears to produce reasonable results. For VDSs 
1201348 and 1201839, the estimated demands for the second 
half of the congested period are significantly lower than the 
measured volumes immediately following the congestion. For 
VDSs 1201419 and 1217710, the estimated second-half demands 
are higher that those estimated for the first half of congestion.

Associating Incidents with Segments

Spatially, incidents were assigned to segments if the incident’s 
linear referencing information indicated that it occurred on 
the segment.

Temporally, for the peak hour, peak period, and midday 
models, an incident was assigned to a time slice if it began in or 
15 min before the time slice, ended in the time slice, or spanned 
the time slice.

Estimation of Independent Variables

The final data-rich models contained a combination of up to 
three independent variables:

•	 The demand-to-capacity ratio (critical or average);
•	 Incident lane-hours lost (ILHL); and
•	 Hours of precipitation exceeding 0.05 in.

This section describes how each independent variable was 
calculated from the processed data sets.

Calculating the Demand-to-Capacity Ratio

The demand-to-capacity ratio is a critical input into all forms 
of the data-rich model. The previous section describes the 
process for calculating 5-min demand values from link-level 
measured volumes. Two forms of demand-to-capacity ratio 
were computed, stored, and used in the data-rich model:

•	 Critical demand-to-capacity ratio. The critical demand of a 
section is calculated as the highest 99th-percentile demand 
measured on a link on the segment during the given time 
period (peak hour or peak period) over a year.

•	 Average demand-to-capacity ratio. The average demand is 
calculated as the average demand measured on all links on 
the segment during the given time period (peak hour or 
peak period) over a year.

Speed
Threshold

Congestion
Start 

Congestion
End 

Figure A.4. L03 demand calculation concept.
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VDS 1201292 VDS 1201419

VDS 1202105 VDS 1201839

VDS 1201348 VDS 1217710

Figure A.5. Demand-estimation methodology applied to detector data in Orange County, California.
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The capacity used in both ratios is the hourly capacity 
according to HCM methods.

Calculating Lane-Hours Lost

The lane-hours lost term in the model is meant to be the sum 
of lane-hours lost because of incidents and lane-hours lost 
because of work zones. The L03 project team only considered 
incidents in its developed models. Over a year, ILHL is calcu-
lated as follows:

ILHL =  number of incidents  lanes blocked  incident 
durations

Through exploratory analysis, the L03 team developed the 
following guidelines for estimating the above parameters:

•	 If the incident rate is unavailable, it can be estimated by 
multiplying the crash rate by 4.545.

•	 If lanes blocked per incident is unavailable, it can be esti-
mated as follows:
44 0.476 if a usable shoulder is present and the agency 
moves lane-blocking incidents to the shoulder as quickly 
as possible;

44 0.580 if lane-blocking incidents are not moved to the 
shoulder; and

44 1.140 if usable shoulders are unavailable.

The L03 team concluded that while they had hoped to 
develop a statistical relationship between incident manage-
ment policies and average incident duration, sufficient data 
were not available. The final report contains average incident 
durations in all of the study locations for use by practitioners.

Since the models are used to predict reliability measures 
within defined time periods (like the peak hour or peak period), 
the lane-hours lost because of a particular incident have to be 
assigned to these time periods. In L03, the total lane-hours lost 
caused by an incident were calculated and attributed to time 
periods based on the percentage of the active incident time 
spent in the time period. For example, if an incident that 
causes 10 lane-hours lost lasts from 8:00 a.m. to 9:00 a.m. on 
a section that has a peak period from 6:00 a.m. to 10:00 p.m. 
and a peak hour from 7:30 a.m. to 8:30 a.m., 10 lane-hours 
lost are contributed to the peak period and 5 lane-hours lost 
are contributed to the peak hour.

Calculating Precipitation

Hourly weather data from the National Weather Service 
(NWS) were used to compute the number of hours that had 
precipitation exceeding defined thresholds (ultimately, the 
number of hours where rainfall exceeded 0.05 in. was included 
in the data-rich model).

Final Analysis Data Set

The final analysis data set summarizes segment travel time 
reliability, demand, capacity, incidents, and weather con-
ditions over an entire year. For TTI, the distribution and 
moments were computed as the volume-weighted average of 
all of the 5-min TTIs in the given time period over the year. 
This is a critical piece of the analysis chain, as it means that 
the ultimate travel time distributions and results are weighted 
toward the time periods that are the most heavily traveled. 
This is in contrast to a facility-level perspective, which treats 
each measurement equally regardless of how many vehicles 
experienced it.

Model Calibration

Data-Rich

The data-rich model contains three independent variables 
that predict travel time reliability over a year:

•	 The critical and average demand-to-capacity ratio;
•	 The ILHL; and
•	 The number of hours when precipitation exceeded 0.05 in.

Equations were fit for the peak hour, peak period, midday, 
and weekday time periods, and were developed to predict the 
mean and 10th, 50th, 80th, 95th, and 99th percentile for urban 
freeway sections. The equations are all listed in the attachment 
of this document.

Figure A.6 shows which of the independent variables 
(icons) were used in the models for the different TTI moments 
(columns) and time periods (row). The colors of the table 
show the root mean square error (RMSE) for each model 
during the calibration process. While the critical demand-to-
capacity ratio and the ILHL were used in all of the peak hour 
and peak period equations, the hours of precipitation term 
was only used in six of the time period/moment equations. 
During the midday period, reliability is predicted only by 
the critical demand-to-capacity ratio. The RMSE generally 
increases with the higher TTI moments, likely because there 
is significantly more variability in the higher-percentile TTIs  
than in the mean, 10th-, and 50th-percentile TTIs across dif-
ferent segments.

Data-Poor

The data-poor model has only one independent variable: the 
mean TTI. Unlike the data-rich model, the data-poor predic-
tive equations are not calibrated to specific time periods. 
Similar to the data-rich model, equations were developed to  
predict specific reliability metrics: the 80th-, 90th-, and 95th-
percentile TTIs; the standard deviation TTI; the percentage of  
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on-time trips made within 1.1 and 1.25 times the median 
TTI; and the percentage of on-time trips with 30-, 45-, and 
50-mph speed thresholds.

Two sets of data-poor equations are presented in the L03 
final report and have been included in the attachment of this 
document. The equations presented in the main body of the 
final report use an exponential form to relate the mean TTI 
with reliability. Appendix H, which supersedes the models in 
the body of the L03 report, presents a revised set of equations 
to account for the fact that the exponential form does not do 
well at estimating TTIs that exceed 2.0 (which are common in 
planning applications). The revised equations use the follow-
ing forms:

•	 Natural log relationship for the percentile predictions;
•	 Exponential relationship with revised coefficients for the 

standard deviation prediction;
•	 Negative exponential form for the on-time measures for 45 

and 50 mph; and
•	 Sigmoidal form for the on-time measure for 30 mph.

No revised equations were presented for the percentage of 
on-time trips made within 1.1 and 1.25 times the median TTI.

Figure A.7 shows the RMSE for each equation during the 
calibration process. No calibration results were presented for 
the revised equations in the final report.

Model Validation

The data-rich and data-poor models were both validated on 
26 urban freeway sections in Seattle. The L03 final report 
presents validation errors (measured in percent difference 

between the actual and predicted values) for the following 
equations:

•	 Data-rich: mean, 80th-percentile, and 95th-percentile TTIs 
during the peak period and weekday (all 24-h) time peri-
ods, and

•	 Data-poor: 80th- and 95th-percentile TTIs.

The validation errors are shown in Figure A.8. The solid 
colors indicate sections on which the model overpredicted 
the TTI (thus predicting that the segment is less reliable than  
it actually is) and the striped colors indicate sections on which 
the model underpredicted the TTI (thus predicting that the 
segment is more reliable than it actually is).

As noted by the L03 project team, the models tend to 
underpredict the weekday TTIs in the Seattle region. The 
final report authors speculate that this may be because of 

Figure A.7. Calibration root mean square 
error, data-poor equations.

Figure A.6. RMSE of data-rich model calibration.
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the lack of a rain variable in the weekday models; rain is an 
important factor in Seattle congestion. The data-poor model 
exhibits the same underprediction trend, particularly with 
the 95th-percentile equation. The L03 project team recom-
mended further validation of the models to address these 
high errors.

Application Guidelines

Chapter 8 of the L03 final report contains application guide-
lines for using the project findings, including the data-rich 

and data-poor models to estimate the reliability impacts of 
various improvement scenarios. With respect to the model, it 
concludes that the data-poor models can be used to generate 
reliability statistics for many planning-level applications. 
Since the overall TTI from planning models includes only 
recurrent congestion, analysts must figure out how to incor-
porate nonrecurrent events into an overall mean TTI for use 
in the models. L03 provides an adjustment factor for doing 
this. For the data-rich models, the application guidelines 
include tables to link improvement actions with changes in 
the independent variables.

Figure A.8. Validation errors.
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Recommendations

The L33 project team reviewed the L03 final report and final 
technical expert task group (TETG) presentation and com-
municated with the L03 principal investigator to assess the 
lessons learned and final conclusions from that project. The 
major findings and opportunities for L33 to further explore 
are as follows:

Geographic Scope

One issue with the L03 model validation and calibration steps 
is that winter weather was a factor in only one of the seven 
cities (Minneapolis). Additionally, all of the regions studied 
had well-developed incident management programs and 
other real-time operational activities. Further research should 
include more winter weather locations as well as more opera-
tionally diverse metropolitan areas.

Section Characteristics

All of the study sections shared two key characteristics: (1) all 
had three or more lanes per direction of travel, and (2) all 
regularly experienced severe congestion. Further work should 
consider sections with more diverse cross-sections and levels 
of congestion. These may be important factors because the 
impact of a lane blockage increases when there are fewer 
available lanes. Additionally, on severely congested segments, 
the relative impact of incidents, work zone, and inclement 
weather is less than on segments with less recurrent delay.

Additionally, L03 had some concerns about the perfor-
mance of the data-poor models during extremely congested 
conditions. This is why revised models were included in the 
appendix of the final L03 report. It is recommended to vali-
date and potentially recalibrate on sections that experience 
extremely congested conditions.

A further consideration is how capacity-restricting events 
like incidents and work zones are assigned to roadway sections. 

L03, as well as the SHRP 2 L08 project, Incorporation of 
Travel Time Reliability into the Highway Capacity Manual, 
assigned incidents to the section that they occur on. However, 
incidents that occur on one section often have impacts off of 
the section that are not captured in the L03 models. Similarly, 
incidents at the upstream end of a section may improve oper-
ations further downstream because of metering. These 
assumptions could be explored in further work.

Modification of Independent Variables

The L03 project team identified some opportunities for improv-
ing the estimation of independent variables in the models as 
well as potentially modifying them to produce better results. 
On the data-poor side, the team recommends a more rigorous 
approach for translating a recurring mean TTI into an overall 
mean TTI, ideally one that uses section-level incident and 
weather characteristics. On the data-rich side, results may be 
improved by altering the lane-hours-lost variable such that it 
is normalized by the total number of lanes at the location. 
Further exploration is also needed to figure out why this vari-
able was not significant during the off-peak hours.

Additional Independent Variables

The two main identified opportunities for additional inde-
pendent variables are (1) a representation of the number of 
lanes along a segment, and (2) a snowfall term.

Predictive Reliability Models

This section reviews the development and usage of other pre-
dictive travel time reliability models within the SHRP 2 Reli-
ability program.

The SHRP 2 L05 project created a framework for how the 
various predictive reliability outputs of the SHRP 2 program 
can support different levels of analysis. Their findings, pre-
sented in Table A.4, identify three projects besides L03 that 

Table A.4. Analysis Supported By SHRP 2 Reliability Predictive Models

Analysis Type/Scale Supporting Tools

Sketch planning L03 reliability prediction equations

Project planning L07 hybrid method where data inputs are limited
L08 multiscenario methods where additional data are available and more resolution in results are desired

Facility performance L08 multiscenario methods most directly applicable
L04 preprocessor (simulation manager) and postprocessor (trajectory processor) could be used, then the performance 

of an individual facility can be isolated

Travel demand forecasting L03 reliability prediction equations and L07 method can be adapted as postprocessors
L08 multiscenario methods could be used to develop custom functions for postprocessing

Traffic simulation L04 preprocessor (simulation manager) and postprocessor (trajectory processor) most appropriate
L08 scenario generator can be adapted
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developed predictive travel time reliability models: L07, L04, 
and L08. Together the four projects support analyses at the 
sketch planning, project planning, facility performance, 
travel demand forecasting, and traffic simulation levels.

SHRP 2 L07: Evaluating Cost-Effectiveness 
of Highway Design Features

The purpose of the L07 project, which is still active, is to 
assess the role of various treatments in reducing nonrecur-
rent congestion. The output of the project is a spreadsheet-
based tool that allows users to input specific roadway 
information and view the predicted reliability curve based on 
the L03 equations. The tool lets users compare an untreated 
TTI curve with treated TTI curves to view the effect of each 
treatment of reliability on a particular section of roadway.

The L07 project team made some revisions to the L03 
models to adapt them to their spreadsheet application. The 
main motivation for the adaptations was to improve their 
applicability to sections on which congestion is dominated by 
nonrecurrent events. This largely applies to rural areas and 
small and medium urban areas (relevant to L33). The revised 
models have been submitted in a draft final report and are 
awaiting approval by the L07 TETG.

Revisions were made only to the data-rich models. The L07 
team focused on the peak hour data-rich model from L03 but 
generalized it such that it could be applied to any hour of any 
day. The draft equations are presented in the attachment of 
this appendix.

The first major change is that L07 split the data-rich model 
into two separate equations: to be applied to sections and 
hours with a critical demand-to-capacity ratio of less than or 
more than 0.8. This change was made to allow for better 
results on lower demand sections given that the L03 peak 
hour equation focused on heavily congested segments. The 
equations use the same independent variables as the L03 peak 
hour model but also include a snowfall term that measures 
the number of hours during the time period when snowfall 
exceeded 0.01 in. Both equations also split the predicted TTI 
into two components, the nonprecipitation portion of the 
predicted TTI (which is exponential, with independent vari-
ables lane-hour lost and critical demand-to-capacity ratio) 
and the precipitation TTI. For the low-demand model, the 
coefficients are continuous, so the data-poor model can be 
used to calculate a continuous TTI density function. For the 
data-rich model, coefficients were developed to predict the 
10th-, 50th-, 80th-, 95th-, and 99th-percentile TTIs.

The L07 revised equations were calibrated using data from 
Minnesota, processed by the L07 project team. According to 
the project team, calibration errors were not calculated; 
rather, the reasonableness of the values output by the spread-
sheet were assessed and deemed to be acceptable for the 
spreadsheet application.

Both the L03 and L07 project team noted that the predic-
tive equations are not optimal for predicting the travel time 
impacts of extremely rare events that affect the highest per-
centiles, because these events are so rare over the time frame 
of one year. As such, the L07 team is also developing a way to 
account for the reliability impacts of multihour incidents to 
directly manipulate the TTI curve after the predictive equa-
tions have been implemented.

SHRP 2 L04: Incorporating Reliability 
Performance Measures in Operations  
and Planning Modeling Tools

The purpose of the L04 project, which was completed in 
March 2013, was to develop software to apply simulation 
models in a way that more fully accounts for the factors that 
cause nonrecurrent congestion. The software consists of two 
modules: (1) a scenario generator that produces random 
inputs of incidents, work zones, weather, and other nonre-
current congestion factors for the simulation; and (2) a tra-
jectory processor that generates travel time distributions.

The L33 project team reviewed the SHRP 2 L04 Task 7 
Report to understand the overlap between the two projects. 
Similar to the L03 team, the L04 team chose to focus their 
reliability analysis on the relationship between the mean 
travel times and measures of reliability (in the case of L07, the 
standard deviation travel time). In the exploratory analysis 
phase of the project, the L07 team tested three possible rela-
tionships between the mean travel time per mile and the stan-
dard deviation travel time per mile: (1) linear, (2) square root, 
and (3) quadratic. Since no real-world trajectory data were 
readily available, the relationships were tested using simu-
lated trajectory data at the network, origin–destination, path, 
and link levels in Irvine, California; Baltimore, Maryland/
Washington, D.C., and New York City. Travel time variability 
was considered in two ways: (1) the variation among vehicle 
travel times departing at the same time (origin–destination, 
path, and link levels); and (2) the variation by time of day 
(network-level). Ultimately, the quadratic model had the best 
goodness-of-fit (R-squared), but some of its coefficients had 
high p-values and violated accepted theory. The linear regres-
sion model was selected as the best model because it generally 
exhibited higher R-squared values than the quadratic model. 
In all models, the network-level had the highest slope (stan-
dard deviation increases faster with mean travel time) and the 
network-level the smallest slope. The linear relationship was 
validated using GPS probe data collected near Puget Sound. 
The validation yielded the following R-squared values:

•	 Origin–destination: 0.5770;
•	 Path: 0.3861; and
•	 Link: 0.6675.
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These relationships were ultimately used to validate the 
results of the travel times output by the project’s mesoscopic 
model. The L07 project team fit a linear regression model to 
the mean travel time per mile and standard deviation travel 
time per mile output by their mesoscopic model and com-
pared the coefficients with those obtained from fitting the lin-
ear model to 4 hours of GPS trajectory data in New York City 
purchased from TomTom. The magnitudes of the coefficients 
were deemed comparable to those obtained for the simulated 
data, except at the network-level.

SHRP 2 L08: Incorporation of Travel Time 
Reliability into the Highway Capacity Manual

The SHRP 2 L08 project began in 2011 and is anticipated to 
end in the spring of 2013. The purpose of the L08 project is 
to develop analytic methods for potential incorporation of 
travel time reliability into the HCM. According to the draft 
final report, the project had two objectives: (1) to incorpo-
rate nonrecurring congestion impacts into the HCM and 
(2) to expand the HCM analysis horizon from a single study 
period to several weeks or months to assess variability. The 
project’s methodology for freeways contains three compo-
nents: (1) a data depository; (2) a scenario generator; and 
(3) a computational processor, each of which is described 
in turn.

The data depository contains required inputs to the sce-
nario generator. At a segment-specific level, this includes seg-
ment geometries, free-flow speeds, lane patterns, segment 
types, and demand [which can be directly measured from 
field sensors over a sample of days or estimated from projec-
tions of annual average daily traffic (AADT)]. The depository 
also includes information about nonrecurrent congestion, 
such as the varying impacts it can have on traffic (for an inci-
dent, a shoulder closure versus a one-lane closure versus a 
two-lane closure); the probability of its occurrence during a 
particular time period; its duration; and the impact that it has 
on free-flow speed, demand, and capacity. These nonrecur-
rent congestion inputs have default values for cases where 
local data collection is not feasible. These inputs are fed into 
the scenario generator.

The freeway scenario generator (FSG) develops operational 
scenarios that a freeway facility may experience and the prob-
ability that they may occur during a particular time period. 
These scenarios are based on the nonrecurrent congestion 
inputs in the data depository. The methodology assumes that 
events are independent (thus, the probability that an incident 
and precipitation occur at the same time is equal to the product 
of their individual probabilities). The scenarios are ultimately 
expressed as demand and capacity parameters and fed into the 
core computation engine, which is an extension of the freeway 
evaluation tool (called FREEVAL-RL).

The FREEVAL-RL tool extended on past methodologies 
and was developed to generate a reliability report that char-
acterizes the travel time distribution of a particular scenario.

Other Reliability Research

This section describes other recent research and implemen-
tation efforts into other aspects of understanding travel 
time reliability. It details predictive models in practice, best 
practices in data processing techniques, current research on 
the optimal reliability metrics, and recently developed 
methodologies for understanding the relationship between 
non recurrent congestion and reliability in the SHRP 2 
program.

Predictive Models in Practice

The Florida Department of Transportation’s (FDOT) Reli-
ability Model was featured in the SHRP 2 L05 final report as 
a best practice example of using reliability performance mea-
sures in planning and programming. FDOT’s preferred reli-
ability statistic is the percentage of trips that arrive on time, 
defined as within 10 mph of the free-flow speed (the posted 
speed limit plus 5 mph) of the section. FDOT’s predictive 
model calculates expected travel times for a set of predefined 
scenarios, along with the probability of each scenario occur-
ring. Each scenario assumes some set of conditions including 
congestion level, weather, incidents, and work zones. For a 
particular section of road, the estimated travel times for each 
scenario are combined with the expected frequency of the 
scenario to create the travel time distribution for the section. 
This methodology is applied to the entire state freeway sys-
tem, regardless of instrumentation. Each freeway is divided 
into sections, and the model applied to each of the 24 h in a 
day for each segment direction.

The model uses four major causes of congestion: recur-
ring, incidents, weather, and work zones. Data inputs include 
hourly demand-to-capacity ratios derived from AADT and 
hourly and directional distributions of traffic. Travel times 
are determined for each segment for each scenario according 
to the following:

•	 Recurring congestion component. Determined through 
HCM planning applications and CORSIM (corridor simu-
lation traffic software) travel time estimations.

•	 Incident component. Impact determined by capacity reduc-
tion. Probability determined from FDOT crash data dur-
ing different work zone and precipitation conditions, and 
an assumed ratio of non-blocking to lane-blocking events.

•	 Weather component. Impact assumed to be 6% speed reduc-
tion for light rain and 12% for heavy rain. Probability of clear 
weather (<0.01 in./h), light rain (0.01 to 0.5 in./h), and  
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heavy rain (>0.5 in./h) determined from Weather Under-
ground data.

•	 Work Zone component. Impact determined by capacity 
reduction. No data available, so constant probabilities 
assumed during particular times of day (3% overnight, 1% 
otherwise).

The data produced by this model are used for systemwide 
reporting and to set project priorities.

Data Processing

Applying best practices of traffic data processing techniques 
is an important component of the L33 project; how the data 
is quality controlled, aggregated, and turned into travel times 
as input into the model calibration ultimately affects the 
validity and applicability of the final results.

The SHRP 2 project that most fully addressed traffic data 
processing is L02, Establishing Monitoring Programs for 
Mobility and Travel Time Reliability. Chapters 3, 4, and 6 of 
the draft final report document methodologies for identify-
ing and imputing bad traffic data from point detectors and 
filtering unrepresentative travel times from automated vehi-
cle identification (AVI) and automated vehicle location 
(AVL) data sources. Figure A.9 illustrates these processing 
steps to show the computations that need to be performed 
on each type of data. Many of the findings in the L02 final 
documents directly relate to the required data processing 
needed to validate the L03 data-rich and data-poor models, 
including

1. Filtering detector data to remove samples with poor data 
quality;

2. Filtering AVI travel times to remove unrepresentative 
travel times;

3. Calculating segment and route travel times from time-
mean-speeds; and

4. Estimating individual vehicle travel time probability den-
sity functions (PDFs) from facility-average travel times.

Reliability Metrics

Many of the SHRP 2 Reliability projects have performed user 
surveys and analysis to determine the optimal measures for 
summarizing reliability for different audiences. The L03 proj-
ect explored measures commonly used in the United States 
and Europe to identify the set of measures to use in projects. 
Exploratory analysis showed that index measures (like the 
buffer index and planning time index) are not optimal for 
tracking reliability improvements because some improve-
ments can make the mean (or median) travel time improve 
more than the 95th percentile travel time, thus showing a 
worsening in reliability. General consensus among the SHRP 
2 Reliability projects and other research is that the best mea-
sures are those that provide information on the underlying 
travel time distributions. The L03 reliability models predict 
the mean, median, and 10th-, 80th-, 90th-, and 95th- percentile 
travel times. From these values, skew can be computed. The 
L07 extended-L03 models generate continuous probability 
density functions in the low-demand equation of their pre-
dictive model.

While the goal of reliability monitoring and prediction is 
to provide a full PDF of travel time conditions, the PDF can 
be developed in different ways. In an ideal monitoring envi-
ronment, and one that will be possible in the future, travel 
times can be collected from every individual vehicle travers-
ing a segment. In this case, a PDF of 5-min-level travel times 
can be assembled in one of two ways: (1) an individual  
traveler-level PDF, which is based on the full set of travel 
times measured across all vehicles that made the trip during 

Figure A.9. L02 data processing by technology.
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that 5-min period over a year, or (2) a facility-level PDF,  
in which the individual vehicle travel times are averaged 
within each 5-min period, and the PDF is composed of the 
5-min average travel times across the year. The L02 project 
developed methodologies and guidance on developing both 
types of PDFs from different detection technologies. The 
L03 project produced a different PDF; the average 5-min 
travel times across a year were put into travel time bins, then 
each bin was weighted by the number of travel times in the 
bin as well as the average volume on the segment across all 
the time periods that experienced that travel time. This is 
similar to the individual traveler-level PDF in that it weights 
travel times by the number of vehicles that experienced 
them, but different in that it does not capture the variability 
of travel times within a single 5-min period.

Nonrecurrent Congestion Methodologies

A major piece of the SHRP 2 Reliability program is figuring 
out how the factors of nonrecurrent congestion affect travel 
time reliability. FHWA identified seven sources of nonrecur-
rent congestion: (1) incidents, (2) weather, (3) work zones, 
(4) fluctuation in demand, (5) special events, (6) traffic con-
trol devices, and (7) inadequate base capacity. This section 
addresses the outputs from the SHRP 2 program that seek to 
quantify the relationship between nonrecurrent congestion 
and reliability.

SHRP 2 L03

Outside of the predictive reliability model research, the L03 
team performed a detailed congestion-by-source analysis 
using the collected Seattle data. The work was performed by 
associating disruptions with travel times and delay. The ana-
lysts used 5-min delay and travel time data and data on the 
sources of congestion to assign influence variables to time 

periods affected by disruptions, grouped into incidents, inci-
dents involving lane closures, vehicle crashes, active construc-
tion events, bad weather, and rubbernecking (delay in the 
opposite direction of travel of the incident). Methodologies 
were also developed to relate off-segment congestion influences 
to the segment being studied. Performance during the disrup-
tions was compared with the segment’s baseline performance. 
The results of the analysis ultimately summarize the percentage 
of delay caused by the different types of disruptions.

SHRP 2 L02

The L02 project performed similar analyses but related the 
sources of congestion to the underlying travel time PDFs. The 
project’s guidebook recommends six steps for assessing the 
reliability impacts of influencing factors:

1. Select the region or facilities of interest.
2. Select a timeframe of interest.
3. Assemble travel rate data for each facility.
4. Generate PDFs for each facility.
5. Understand variations in reliability as a result of 

congestion.
6. Develop cumulative distribution functions (CDFs) for 

each combination or recurring congestion level and non-
recurring event.

An example of the final step is shown in Figure A.10.

SHRP 2 L08

The L08 project has performed significant analysis into quan-
tifying the reliability impact of nonrecurrent congestion 
events to feed into the HCM update. In the L08 project, vari-
ability in demand, weather, and incidents are the nonrecur-
rent congestion factors that affect travel time reliability. The 

Figure A.10. Influencing factor CDF, L02.



43   

L08 methodology incorporates these factors by discretizing a 
particular factor into a category and estimating the probabil-
ity that each category of factor will occur during a particular 
time period. Demand is categorized into different demand 
patterns that are facility-specific and organized by day of 
week and month. The probability of each demand pattern 
occurring within a particular time period is then easily com-
puted from the frequency of that demand pattern by day of 
week and month in the study period. Weather is categorized 
into the HCM categories shown to impact travel time: 
medium rain, heavy rain, light snow, light-medium snow, 
medium-heavy snow, heavy snow, very low visibility, minimal 
visibility, and normal weather. The frequency of these catego-
ries can easily be estimated from hourly weather data. Inci-
dents are grouped into six categories based on their severity 
or capacity impacts: no incident, shoulder closure, one-lane 
closure, two-lane closure, three-lane closure, and four-lane 
closure. Probabilities can be computed from empirical data.

Conclusions

This final section summarizes lessons learned from the back-
ground review and details potential opportunities for further 
exploration in the L33 project.

Validating in Multiple Regions  
with Diverse Characteristics

The L03 data-rich and data-poor models were validated in 
only one location, Seattle, a metropolitan area that had vastly 
different weather patterns from any of the calibration loca-
tions. As such, it is critical that the L33 project performs the 
validation at multiple sites with a wide range in climate and 
operational policies.

Finding Sufficiently Detailed Data Sets

The L03 team experienced significant challenges in acquiring 
data sets that had a sufficient level of detail needed to calibrate 
the predictive models, particularly with regard to disruptions 
like incidents and lane closures. In one example, the L03 team 
thought that the Traffic.com data it had purchased in most of 
the study areas contained lane closure data but, on further 
investigation, determined that lane closure data was infre-
quently and inconsistently reported. In another example, the 
L03 team had planned to incorporate an agency’s incident 
clearance policies into the data-rich predictive model by using 
agency-reported TIM scores, but subsequently learned that 
only a few of the study areas had reported TIM scores. These 
experiences highlight the importance of seeking out data 
sources, guaranteeing their availability, and making sure that 
together they can be used to estimate all of the desired model 
variables.

Implementing Best Practices  
of Data Processing

A major portion of L03 resources were spent on quality con-
trolling and processing the collected traffic and incident 
data, a necessary effort for ensuring valid model results. In 
the time since the L03 analysis was conducted, the L02 proj-
ect, which focused on monitoring travel time reliability, has 
been completed and published and is in the process of being 
implemented. The timing of the L33 project is such that it is 
well-positioned to take advantage of the best practices in traf-
fic and nonrecurrent congestion source data processing 
established by the SHRP 2 program.

Accurately Capturing Demand

SHRP 2 research has found the complex interaction between 
demand and capacity to be a critical determinant of travel 
time reliability. The L03 project established an empirical 
approach for estimating demand for every 5-min period, but 
exploratory analysis performed by the L33 team has shown 
that this can produce inaccurate results in a number of cases. 
This estimation process appears to be an opportunity for 
improvement in the L33 project.

Capturing the Right Independent Variables

The L03 project found that the demand-to-capacity ratio, the 
ILHL, and the number of hours with precipitation exceeding 
0.05 in. to be the key predictors of reliability in a data-rich 
environment. However, the L03 team recommended that fur-
ther investigation consider modifying the ILHL variable to 
account for the total number of lanes at the location. In 
extending the L03 data-rich models, the L07 project team 
modified the precipitation variable to also include hours of 
snowfall exceeding 0.01 in. A major focus of the L33 project 
will be to assess whether the modification of existing inde-
pendent variables or the addition of further independent 
variables reduce the calibration and validation errors.

Further Investigation of the Relationship 
Between the Mean Travel Time  
and Reliability

Both the L03 and L04 projects independently arrived at the 
conclusion that measures of travel time reliability can be pre-
dicted with reasonable accuracy from the mean travel time. 
However, when the L03 team validated the data-poor model 
in Seattle, they noted that it significantly underpredicted high 
percentile travel times, even though the model had strong 
goodness-of-fit in the calibration stage. The L33 team plans 
to investigate whether this relationship is the ideal form for a 
predictive data-poor model.

http://www.Traffic.com
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Measuring the Travel Time Probability 
Density Function

In measuring the travel time probability density functions of 
each study section for calibration and validation of the data-
rich and data-poor models, the L03 project team weighted 
each measured travel time bin by the frequency it occurred as 
well as the average volume on the segment across the 5-min 
time periods that experienced that travel time. According to 
the L03 principal investigator, this was done to ensure that the 
models will still be applicable in the future when it is possible 
to directly measure travel times from every vehicle traversing 
a segment. However, the PDF approximated in L03 is still 
fundamentally different from that assembled from individual 
vehicle travel times, which accounts for the variability of 
travel times between different vehicles traversing the same 
segment at the same time. In L33, the project team wants to 
explore the PDF assumption made in L03 and assess the value 
of providing models to predict other PDF forms.

Predicting a Travel Time Probability  
Density Function

Recent reliability research concludes that the closer one can 
get to measuring or predicting the full travel time probability 
density function the better the understanding of reliability 
will be. A full PDF can support the computation of any travel 
time reliability measure. The L07 team has already extended 
the L03 models such that, for low-demand conditions, they 
can predict a continuous PDF. The L33 team plans to evaluate 
revised equations and methodologies that can provide a fuller 
picture of segment-level travel time reliability.
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Appendix A Attachment

This attachment lists the equations for the data-rich and data-
poor models from L03 and L07 projects, which are noted in 
Appendix A.

L03 data-Rich equations, 
Chapter 7 of Final Report

Peak Period

mean TTI (1)0.09677 dc 0.00862 ILHL 0.00904 Rain05Hrscrite � � �= ( )+ +

RMSE = 18.8%; alpha level of coefficients: <0.0001, 
<0.0001, 0.0189 (in order of appearance in the equations)

99th-percentile TTI
(2)

0.33477 dc 0.012350 ILHL 0.025315 Rain05Hrscrite � � �= ( )+ +

RMSE = 39.8%; alpha level of coefficients: <0.0001, 0.0002, 
0.0022

95th-percentile TTI
(3)

0.23233 dc 0.01222 ILHL 0.01777 Rain05Hrscrite � � �= ( )+ +

RMSE = 32.3%; alpha level of coefficients: <0.0001, <0.0001, 
0.0078

80th-percentile TTI
(4)

0.13992 dc 0.01118 ILHL 0.01271 Rain05Hrscrite � � �= ( )+ +

RMSE = 25.8%; alpha level of coefficients: <0.0001, <0.0001, 
0.0163

50th-percentile TTI (5)0.09335 dc 0.00932 ILHLcrite � �= ( )+

RMSE = 20.5%; alpha level of coefficients: <0.0001, <0.0001

10th-percentile TTI (6)0.01180 dc 0.00145 ILHLcrite � �= ( )+

RMSE = 6.7%; alpha level of coefficients: 0.0169, 0.0060

Peak Hour

mean TTI (7)0.27886 dc 0.01089 ILHL 0.02935 Rain05Hrscrite � � �= ( )+ +

RMSE = 26.4%; alpha level of coefficients: 0.0008, 0.0094, 
0.0838

99th-percentile TTI (8)1.13062 dc 0.01242 ILHLcrite � �= ( )+

RMSE = 41.3%; alpha level of coefficients: <0.0001, 0.0477

95th-percentile TTI
(9)

0.63071 dc 0.01219 ILHL 0.04744 Rain05Hrscrite � � �= ( )+ +

RMSE = 38.3%; alpha level of coefficients: <0.0001, 0.0436, 
0.0553

80th-percentile TTI (10)0.52013 dc 0.01544 ILHLcrite � �= ( )+

RMSE = 34.1%; alpha level of coefficients: <0.0001, 0.0031

50th-percentile TTI (11)0.29097 dc 0.01380 ILHLcrite � �= ( )+

RMSE = 28.3%; alpha level of coefficients: <0.0001, 0.0015

10th-percentile TTI (12)0.07643 dc 0.00405 ILHLcrite � �= ( )+

RMSE = 15.2%; alpha level of coefficients: 0.0081, 0.0748

Midday (11:00 a.m. to 2:00 p.m., Weekdays)

mean TTI (13)0.02599 dccrite �= ( )

RMSE = 7.5%; alpha level of coefficient: <0.0001

99th-percentile TTI (14)0.19167 dccrite �= ( )

RMSE = 33.4%; alpha level of coefficient: <0.0001
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95th-percentile TTI (15)0.07812 dccrite �= ( )

RMSE = 21.8%; alpha level of coefficient: <0.0001

80th-percentile TTI (16)0.02612 dccrite �= ( )

RMSE = 9.2%; alpha level of coefficient: <0.0001

50th-percentile TTI (17)0.01134 dccrite �= ( )

RMSE = 21.8%; alpha level of coefficient: <0.0001

10th-percentile TTI (18)0.00389 dccrite �= ( )

RMSE = 5.1%; alpha level of coefficient: <0.0016

Weekday

mean TTI (19)
0.00949 dc 0.00067 ILHLaveragee

� �= ( )+

RMSE = 29.3%; alpha level of coefficients: <0.0001, 0.0051

99th-percentile TTI (20)
0.07028 dc 0.00222 ILHLaveragee

p p= ( )+

RMSE = 38.9%; alpha level of coefficients: <0.0001, 0.0261

95th-percentile TTI (21)
0.03632 dc 0.00282 ILHLaveragee

� �= ( )+

RMSE = 31.8%; alpha level of coefficients: <0.0001, 0.0007

80th-percentile TTI (22)
0.00842 dc 0.00117 ILHLaveragee

� �= ( )+

RMSE = 14.7%; alpha level of coefficients: 0.0004, 0.0023

50th-percentile TTI (23)
0.0021 dcaveragee

�= ( )

RMSE = 4.7%; alpha level of coefficients: <0.0001

10th-percentile TTI (24)
0.00047 dcaveragee

�= ( )

RMSE = 2.0%; alpha level of coefficients: 0.0121

L03 Data-Poor Equations, Appendix H  
of Final Report

meanTTI 1.0274 RecurringmeanTTI (25)1.2204�=

More work remains to be done to make this adjustment more 
sensitive to the effect of disruptions. Revised section-level equa-
tions are as follows:

95th-percentile TTI 1 3.6700 ln meanTTI (26)+ � ( )=

90th-percentile TTI 1 2.7809 ln meanTTI (27)� ( )= +

80th-percentile TTI 1 2.1406 ln meanTTI (28)= + � ( )

StdDevTTI 0.71 meanTTI 1 (29)0.56= � ( )−

= [ ]( )− −PctTripsOnTime50mph (30)2.0570 meanTTI 1e p

− −PctTripsOnTime45mph (31)( 1.5115 [meanTTI 1])= e p

PctTripsOnTime30mph 0.333 0.672 1

(32)

5.0366 meanTTI 1.8256e[ ]( )= + + [ ]( )∗ −

L03 Data-Poor Equations, Chapter 7  
of Final Report

95th-percentile TTI meanTTI (33)

RMSE 15.7%; alpha level of coefficient 0.0001

1.8834

<

=

=

90th-percentile TTI meanTTI (34)

RMSE 9.4%; alpha level of coefficient 0.0001

1.6424

<

=

=

80th-percentile TTI meanTTI (35)

RMSE 4.5%; alpha level of coefficient 0.0001

1.365=

= <

median TTI meanTTI (36)

RMSE 6.3%; alpha level of coefficient 0.0001

0.8601

<

=

=

10th-percentile TTI MeanTTI (37)

RMSE 5.4%; alpha level of coefficient 0.0001

0.1524

<

=

=

PctTripsOnTime10 1 0.4396 meanTTI 1 (38)

RMSE 8.4%

0.4361= p( )[ ]− −

=

where PctTripsOnTime10 is the percentage of trips that occur 
below the threshold of 1.1  median TTI.

PctTripsOnTime25 1 0.2861 meanTTI 1 (39)

RMSE 7.5%

0.5251
p( )[ ]= − −

=

where PctTripsOnTime25 is the percentage of trips that occur 
below the threshold of 1.25  median TTI.

pPctTripsOnTime50mph 1 0.8985 meanTTI 1

RMSE 18.0% (40)

0.6387( )[ ]= − −

=

where PctTripsOnTime50mph is the percentage of trips that 
occur at space mean speeds above the threshold of 50 mph.

pPctTripsOnTime45mph 1 0.8203 meanTTI 1

RMSE 14.0% (41)

0.7692( )[ ]= − −

=
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where PctTripsOnTime45mph is the percentage of trips that 
occur at space mean speeds above the threshold of 45 mph.

pPctTripsOnTime30mph 1 0.4139 meanTTI 1

RMSE 4.4% (42)

1.5527( )[ ]= − −

=

where PctTripsOnTime30mph is the percentage of trips that 
occur at space mean speeds above the threshold of 30 mph.

( )−standard deviation 0.6182 meanTTI 1 (43)

0.781; alpha levels of coefficients 0.0001

0.5404

2

=

R = <

p

L07 Model Equations, Chapter 4  
of Final Report

TTI

TTI 0.8

TTI 1 2 TTI

1 2 TTI

0.8
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NP,

NP,

days
NP FF

05"

FF NP,

01"

FF NP,

05" 01"

=

e for D C

N
N V

R

c V c
S

d V d

for D C

n

n
c R d s

n n n n

n n n

n n× ≤

× + +

+
+



































>














( )+

where
 TTIn = the predicted nth-percentile travel time index
 TTINP,n =  the nonprecipitation portion of TTIn = e(an D/C + bn LHL)

 LHL =  lane-hours lost due to incidents and work zones 
(see L07 report Chapter 4)

 D/C =  demand-to-capacity ratio (see L07 final report 
Section 4.2.2)

 R05″ =  number of hours in time slice with rain exceeding 
0.05 in. (See L07 final report Chapter 4)

 S01″ =  number of hours in time slice with snow exceed-
ing 0.01 in. (See L07 final report Chapter 4)

 Ndays = number of hours in time slice (365)
 NNP =  number of hours in time slice with no precipita-

tion = Ndays - R05 in. - S01 in.

 VFF = free-flow travel time on segment, mph
 an, bn =  nth-percentile coefficients for nonprecipitation 

components (D/C and LHL). (See L07 final report 
Table 4.5)

 cn, dn =  nth-percentile coefficients for rain and snow 
components, respectively (D/C < 0.8). (See L07 
final report Table 4.5)

 c1n, c2n =  nth-percentile coefficients for rain component 
(D/C > 0.8). (See L07 final report Table 4.5)

 d1n, d2n =  nth-percentile coefficients for snow component 
(D/C > 0.8). (See L07 final report Table 4.5)

For the D/C ≤ 0.8 models, the four coefficients (an, bn, cn, 
dn) were developed as continuous functions of the TTI per-
centile (n), allowing prediction of any percentile value (the 
entire cumulative TTI curve), not just the five percentiles 
shown in Table A.5.

These coefficient functions are built with subcoefficients, 
as shown in the equation below (with values in Table A.6).

coeff (45)1= wn xyn
z n+ ( )−

where
 coeffn =  one of the four coefficients in the TTIn formula 

(an, bn, cn, dn)
 n = percentile (scaled between 0 and 1.0)
 w, x, y, z = subcoefficient (shown in Table A.6)

Table A.5. TTI Prediction Model Coefficients

N 
(percentile)

D/C <– 0.8a D/C > 0.8

an bn cn dn an bn c1n c2n d1n d2n

10 0.01400 0.00099 0.00015 0.00037 0.07643 0.00405 1.364 -28.34 0.178 15.55

50 0.07000 0.00495 0.00075 0.00184 0.29097 0.01380 0.966 -6.74 0.345 3.27

80 0.11214 0.00793 0.00120 0.00310 0.52013 0.01544 0.630 6.89 0.233 5.24

95 0.19763 0.01557 0.00197 0.01056 0.63071 0.01219 0.639 5.04 0.286 1.67

99 0.47282 0.04170 0.00300 0.02293 1.13062 0.01242 0.607 5.27 0.341 -0.55

a Coefficients for D/C ≤ 0.8 are continuous functions of n. See text below for more description.

Table A.6. Subcoefficient 
Values for TTI Prediction  
Model (D/C < 0.8)

coeffn

Subcoefficients

w x y z

an 0.14 0.504 96 9

bn 0.0099 0.0481 96 9

cn 0.00149 0.0197 68 6

dn 0.00367 0.0248 36 7
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Purpose

The purpose of this document is to detail the data collection 
and analysis plans for performing the validation of the L03 
data-rich and data-poor models. As such, this document 
contains three sections. The data collection plan section 
describes the data used in the L03 project, lists the data 
requirements for model validation, and details the metro-
politan areas and data sets available for validation and 
enhancement activities. The analysis plan lists the steps 
needed to transform the raw collected data into the final 
analysis data sets for model validations. Finally, the conclu-
sions section synthesizes the validation design.

Data Collection Plan

Overview

The L03 team calibrated and validated its models using urban 
freeway data collected in the following metropolitan areas:

•	 Atlanta, Georgia (calibration);
•	 Houston, Texas (calibration);
•	 Jacksonville, Florida (calibration);
•	 Los Angeles, California (calibration);
•	 Minneapolis–St. Paul, Minnesota (calibration);
•	 San Diego, California (calibration);
•	 San Francisco, California (calibration); and
•	 Seattle, Washington (validation).

The L03 team selected these sites in part because their 
agencies collect and archive continuous, high-quality traffic 
data. These characteristics are also critical for L33 validation 
and enhancement activities. As such, this validation plan pro-
poses to use data collected in many of the same locations. The 
L33 project team will ensure that the model validation per-
formed in L33 does not use the same data collected during 
the same time frame on the same freeways segments as were 

used to calibrate or validate the models in L03. Because this is 
a critical requirement, this data collection plan reviews the 
regions and data sets used in L03.

Validation Data Characteristics

This section lists the metropolitan area and data sets require-
ments, as well as the optimal data set features, for performing 
the data-rich and data-poor model validation. These require-
ments and features have been developed by evaluating the L03 
data processing methodologies and application guidelines.

Metropolitan Area Requirements

•	 Region must have continuous archived data for at least one 
urban freeway;

•	 Selected regions must offer a wide variety of seasonal 
weather conditions; and

•	 At least five regions must be selected for validation.

Data Set Requirements

•	 At least a year of traffic data must be available;
•	 At least a year of hourly precipitation data must be avail-

able (data-rich only);
•	 At least a year of incident data must be available (data-rich 

only); and
•	 Urban freeway sections must offer high-quality traffic data 

collected from detectors at a dense spacing.

Optimal Data Set Features

•	 At least a year of work zone data are available;
•	 At least a year of travel time data collected from technologies 

other than point detectors are available; and
•	 Incident data contain detailed and accurate information 

on the lane blockages and duration.

A P P e n D i x  B

Validation Plan
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Proposed Regions

Overview

This section details the characteristics of the metropolitan 
areas and data sets that the L33 team has identified as suitable 
for use in the model validation and/or enhancement stages of 
this project.

The L33 team has identified 10 metropolitan areas from 
which to acquire data for validation and enhancement purposes. 
These metropolitan regions, which are listed with key character-
istics in Table B.1 and further detailed in the rest of this section, 
were selected based on the criteria defined in the validation data 
characteristics. Five of the sites were also used in the L03 project. 
For L33, the project team has made efforts to acquire more 
recent data than were used for calibration and validation in L03. 
A chart comparing the data by region used in L03 with the traf-
fic data available to the L33 team is shown in Figure B.1.

Atlanta

The L33 team possesses 6 months of archived traffic data and 
3 months of archived incident and work zone data collected 
through the SHRP 2 L02 project.

L02 collected two types of traffic data in Atlanta:

(1) Data from camera and radar detectors collected in real 
time from the Georgia Department of Transportation’s 
(GDOT) Navigator Advanced Transportation Manage-
ment System (ATMS) and speed; and

(2) Travel time data acquired from data-reseller Navteq (now 
NOKIA).

The point detector data has been quality controlled using 
L02 methodologies and is aggregated to the 5-min level, 
which is consistent with the L03 model data needs. The 
Navteq data have also been aggregated to the 5-min level.

The L33 team also has 3 months of incident and work zone 
data, collected in L02 from Atlanta traffic management cen-
ters through the Navigator system. The incident and work 
zone data are highly detailed: they contain information on 
the type of incident, the number of lanes blocked, and the 
incident duration. This information is sufficient to directly 
calculate incident-lane-hours-lost by time period.

Archived hourly weather data are available from the 
National Climatic Data Center for multiple sensors in the 
metropolitan area.

The L03 data-rich and data-poor models were calibrated 
using Atlanta traffic and incident data collected from Naviga-
tor during the 2006 to 2008 timeframe. Maps of L02 data cov-
erage and L03 study corridors are shown in Figure B.2. L03 
does not have any Atlanta data from these years, so any L33 
analysis will not temporally overlap with that of L03.

The L02 data set does not contain the full year of data 
required for L03 model validation. The incident data may be 
explored during validation to test the L03 relationships devel-
oped between the average number of lanes blocked per inci-
dent and the roadway geometry and incident clearance 
policies, as well as the ratio of collisions to incidents. This 

Table B.1. Site Selection Matrix

Region
Traffic 
Data

L03 
Site

Other Sources Use in L33

Incidents
Work 
Zones Weather

Data-Rich 
Validation

Data-Poor 
Validation Enhancement

Atlanta
Detectors X

X X X
X

Navteq X

Las Vegas Detectors X X X X X X

Los Angeles Detectors X X X X X X X

Minneapolis Detectors X X X X X X

Sacramento
Detectors

X X X
X X X

Bluetooth X

San Diego Detectors X X X X X X X

Salt Lake City Detectors X X X X X X

San Francisco
Detectors X

X X X
X X X

Toll Tag X X X X

Spokane Detectors X X X X X X

Washington, D.C. Detectors X X X X X
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Figure B.1. L33 data availability and L03 data coverage. Note that validation will not be performed on the same freeway  
sections and years that were used to calibrate the L03 data-rich and data-poor models. In other words, no L03 data will be 
used in the L33 validation.
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investigation is further detailed in the analysis plan section of 
this document. This data set may also be further explored in 
the enhancement phase of this project as needed.

Las Vegas

The L33 team has a year (March 2012 to March 2013) of traf-
fic, incident, and work zone data collected from the Regional 
Transportation Commission of Southern Nevada (RTC) 
Freeway and Arterial System of Transportation (FAST) via 
Iteris’ Performance Measurement System (PeMS).

The traffic data were collected from point detectors; data 
coverage is shown in the speed map in Figure B.3. The traffic 
data have been quality controlled per L02 methodologies and 
are available at a 5-min granularity.

The incident and work zone data were collected from the 
FAST Traffic Management Center (TMC) and contain highly 
detailed information on the duration, lane blockage, and type 
of activity. This information is sufficient to directly calculate 
incident-lane-hours-lost by time period.

Archived hourly weather data are available from the National 
Climatic Data Center for multiple sensors in the metropolitan 
area.

No Las Vegas data were used in the L03 project, so this site 
adds regional diversity to the validation activities.

Los Angeles

Multiple years of traffic, incident, and work zone data are 
available in Los Angeles County and Orange County through 
the Caltrans PeMS.

The traffic data are collected from loop and radar detec-
tors, are quality controlled per L02 methodologies, and are 
aggregated to the 5-min level. The spacing of detectors in Los 
Angeles County is very dense, but the percentage of working 
detectors has always hovered around 60%. The spacing in 
neighboring Orange County is of comparable density with 
much higher quality data (70% to 90% working detectors 
since 2009).

L02 Data Coverage L03 Study Corridors

Figure B.2. Atlanta data availability and L03 usage.

Figure B.3. Las Vegas data availability.
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The L33 team has possession of two sources of incident 
data in the Los Angeles region, and throughout California, 
collected via PeMS:

(1) Incidents from the California Highway Patrol (CHP) 
collected in real time from the CHP media feed; and

(2) Traffic accidents from the Caltrans Traffic Accident Sur-
veillance and Analysis System (TASAS), which contains 
severity and lane blockages, but no duration.

The CHP data contain the type of incident and duration 
but no standardized indication of the number of lanes 
blocked. The L33 team is currently exploring ways to parse 
the CHP log details, which often indicate lane blockages in 
free-text form, to estimate the number of lanes blocked. The 
TASAS accidents are compiled by Caltrans through accident 
reports. They report the accident severity and lane blockage 
but only include the incident start time (no duration infor-
mation). As such, these data may not be usable in the data-
rich model but may be explored in conjunction with the CHP 
data to obtain a ratio between the number of collisions and 
the number of overall incidents.

Work zone information is also available in this region, and 
throughout California, via PeMS. PeMS continuously collects 
and archives work zone information from the Caltrans Lane 
Closure System, which is used by Caltrans staff to plan, approve, 
and manage lane closures. PeMS data contain detailed infor-
mation on the work zone start and end times, type of work, 
number of lanes closed, and estimated traffic impact. This 
information is sufficient to calculate the lane-hours-lost 
caused by work zones.

Archived hourly weather data are available from the 
National Climatic Data Center for multiple sensors in the 
metropolitan area.

In Los Angeles, the L03 team used traffic data collected 
from PeMS and incident data collected from traffic.com on 
two study segments in 2001, 2002, 2004, 2005, and 2006. The 
usage of Los Angeles data in L33 will not overlap in time and 
space with the usage in L03. Maps of Los Angeles data cover-
age and L03 study corridors are shown in Figure B.4.

Minneapolis

The L33 project team currently has 10 years of traffic data in 
the Minneapolis–St. Paul region archived in the Minnesota 
Department of Transportation’s (MnDOT) PeMS. The data 
have been quality controlled per L02 methodologies and are 
available at a 5-min granularity.

The MnDOT PeMS also has slightly more than a year of 
traffic incident data archived from MnDOT’s Intelligent 
Roadway Information System (IRIS) ATMS. To supplement 
this, the L03 project team has acquired an additional 4 years 
(2008 to 2012) of archived incident data from MnDOT. This 
incident data contain incident duration, type, and an indica-
tion of the traffic impact. This information is sufficient to 
calculate incident-lane-hours-lost by time period for input 
into the data-rich model.

No work zone data are available in Minneapolis.
In Minneapolis, the L03 team used traffic data collected from 

MnDOT and incident data from traffic.com in 2001 to 2007 to 
calibrate the data-rich and data-poor models. The usage of 
Minneapolis data in L33 will not overlap in time and space with 

L03 Study Corridors Data Availability

Figure B.4. Los Angeles data availability and L03 usage.

http://www.traffic.com
http://www.traffic.com
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the usage in L03. Maps of Minneapolis data coverage and L03 
study corridors are shown in Figure B.5. Even though Minne-
apolis was studied fairly extensively in L03, it is a critical valida-
tion region for L33 given its severe winter weather conditions.

Sacramento

Multiple years of traffic, incident, and work zone data are avail-
able in the Sacramento region through the Caltrans PeMS. The 
types of data available are the same as those described for  
Los Angeles. A map of the available traffic detection network is 
shown in Figure B.6.

In addition, the L02 project’s case study efforts in Lake 
Tahoe included the collection of 4 months of Bluetooth 
data on a segment of Interstate 5 near downtown Sacra-
mento. The remainder of the L02 data collected to support 
this case study was on rural freeways, so it is not useful for 
the L33 project. This quantity of Bluetooth data is not  
sufficient for validation purposes, but it will be critical  
for exploring Bayesian approaches in later phases of the 
project.

Archived hourly weather data are available from the National 
Climatic Data Center for multiple sensors in the metropolitan 
area.

No Sacramento data were used in the L03 project, so this 
site adds regional diversity to the validation activities. Addi-
tionally, the extreme fog conditions that this region can expe-
rience present an added vector into the weather analysis 
portion of the L33 project.

Salt Lake City

Multiple years of traffic data are available in the Salt Lake City 
region through the Utah Department of Transportation’s 
(UDOT) PeMS. The data have been quality controlled and 
are available at a 5-min granularity. A map of the detection 
coverage is shown in Figure B.7.

UDOT’s PeMS system does not contain any archived inci-
dent or work zone data. The L33 team is currently working 
with staff at the UDOT Traffic Operations Center to acquire 
archived incident and work zone data collected by the center’s 
ATMS, with an anticipated delivery date of July 8, 2013. The 

L03 Study CorridorsData Availability

Figure B.5. Minneapolis–St. Paul data availability and L03 usage.

Figure B.6. Sacramento data availability.
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team has been guaranteed the availability of these data, but 
has not yet acquired them. As such, the exact details and for-
mat of the data are currently unknown.

Archived hourly weather data are available from the 
National Climatic Data Center for multiple sensors in the 
metropolitan area.

No Salt Lake City data were used in the L03 project, so this 
area contributes regional diversity as well as another severe 
winter weather site to the validation activities.

San Diego

Multiple years of traffic, incident, and work zone data are 
available in the San Diego region through the Caltrans PeMS. 
The types of data available are the same as those described for 
Los Angeles. Archived hourly weather data are available from 
the National Climatic Data Center for multiple sensors in the 
metropolitan area.

San Diego was a multimodal case study site for the L02 
project. The L02 project leveraged all of the data sources 
described above to develop a framework for linking travel 
time variability with the sources of nonrecurrent congestion.

In San Diego, the L03 team used traffic data collected from 
PeMS and incident data from traffic.com in 2001 to 2006. The 
usage of San Diego data in L33 will not overlap in time and 
space with the usage in L03. Maps of San Diego PeMS data 
coverage and L03 study corridors are shown in Figure B.8.

San Francisco

Multiple years of traffic, incident, and work zone data are 
available in the San Francisco Bay Area through the Caltrans 
PeMS. The types of data available are the same as those 
described for Los Angeles. In the past few years, the quality of 
detector data in the Bay Area has decreased, so L33 study cor-
ridors will have to be carefully selected and may have to rely on 
older data. In addition to the point detector data, PeMS also 
contains matched toll tag travel times. Archived hourly weather 
data are available from the National Climatic Data Center.

In the Bay Area, the L03 team used point detector and 
toll tag data collected from PeMS and incident data from 

Figure B.7. Salt Lake City data availability.

L03 Study Corridors Data Availability 

Figure B.8. San Diego data availability and L03 usage.

http://www.traffic.com
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traffic.com in 2002. The usage of Bay Area data in L33 will not 
overlap in time and space with its usage in L03. Maps of Bay 
Area PeMS data coverage and L03 study corridors are shown 
in Figure B.9.

Spokane

Eight years of traffic data are available in the Spokane region 
via the Spokane Regional Transportation Management Cen-
ter (SRTMC) PeMS. In Spokane, PeMS collects data from 
radar detectors that report data to the TMC. Figure B.10 
shows the available detection network, which monitors the 
I-90 freeway through the city. The other available detection is 
on conventional highways. The traffic data have been quality 
controlled as recommended by the L02 reliability monitoring 

guidebook and are available at 5-min granularities as required 
by the L03 model validation.

The project team also acquired incident and work zone 
data on I-90 in Spokane from the SRTMC. This data set has 
two pieces:

1. Incidents logged by TMC operators, and
2. Incident and work zone traveler alerts issued by the TMC.

The TMC log incidents contain the start time, free-text 
description of the incident, and free-text additional remarks. 
No incident end time is given. The traveler alerts contain start 
and end times and a description of the alert. Initial analysis of 
the data received from the SRTMC suggests that the traveler 
alert information is the better data set for calculating incident-
lane-hours-lost for the data-rich model.

To supplement the TMC incidents, the L33 team acquired 
collision records from 2005 to 2012 for I-90 through Spokane 
from the Washington State Department of Transportation.

Archived hourly weather data are available from the 
National Climatic Data Center.

No data from Spokane were used in the L03 project, so this 
area contributes regional diversity as well as another severe 
winter weather site to the validation activities.

Washington, D.C.

The L33 team is in possession of 2 years of traffic data col-
lected in Northern Virginia near Washington, D.C., during 

L03 Study CorridorsData Availability

Figure B.9. San Francisco Bay Area data availability and L03 usage.

Figure B.10. Spokane data availability.

http://www.traffic.com
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the L02 project. In L02, data from 2009 were obtained from 
the Regional Integrated Transportation Information System 
(RITIS), developed and maintained by the CATT Laboratory at 
the University of Maryland. Data from 2011 and 2012 were col-
lected by the L02 monitoring system in real time from RITIS. 
The traffic data have been quality controlled as recommended 
by the L02 reliability monitoring guidebook and are available at 
5-min granularities as required by the L03 model validation. 
A map of the traffic detection coverage is shown in Figure B.11. 
Data are available on US-66 and I-95 near Washington, D.C. 
The main issue with this data source is that the data were judged 
to be low quality in 2011, with an average of 70% of detectors 
not meeting the data-quality requirements. Data in 2009 are 
superior, so L33 analysis will likely focus on 2009.

The L33 project team has also acquired incident data for 
2009 to 2011 from the University of Maryland. The incident 
data consist of detailed records on incident type, duration, 
and lane blockages over the duration of the incident. The 
availability and format of the work zone data in 2009 have not 
yet been confirmed.

Archived hourly weather data are available from the 
National Climatic Data Center.

No data from Washington, D.C., were used in L03, so this 
area contributes regional diversity as well as another severe 
winter weather site to the validation activities.

Summary

The L33 team proposes to perform validation and enhance-
ment activities in 10 metropolitan areas around the United 
States. Together, these sites have the following characteristics:

•	 9 sites have guaranteed access to traffic data over at least  
a year.

•	 9 sites have guaranteed access to incident data over at least 
a year.

•	 10 sites have guaranteed access to weather data of at least  
a year.

•	 7 sites have guaranteed access to work zone data of at least 
a year.

•	 7 sites have guaranteed access to at least 5 years of traffic, 
incident, and weather data.

•	 3 sites have guaranteed access to traffic data collected by 
technologies other than point detectors.

The charts in Figure B.12 summarize the availability of 
the needed types of data in each of the 10 proposed metro-
politan areas.

Analysis Plan

This analysis plan outlines the L33 team’s proposal for turn-
ing the data sets described in the previous section into the 
final data sets required for validation of the data-rich and 
data-poor models. The plan consists of detailed instructions 
for nine tasks:

1. Select validation freeway sections,
2. Quality-control and aggregate traffic data,
3. Calculate the peak hour and peak period (data-rich only),
4. Calculate travel time reliability measures,
5. Calculate demand-to-capacity ratio variables (data-rich 

only),
6. Calculate incident-lane-hours-lost (data-rich only),
7. Calculate hours of precipitation exceeding 0.05 in. (data-

rich only),
8. Validate data-rich and data-poor equations, and
9. Sensitivity testing on alternative data processing approaches.

In structuring this analysis plan, it was important to bal-
ance conducting validation in the same way as L03 with the 
desire to gauge model performance under different data 

Figure B.11. Washington, D.C., data availability.
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Figure B.12. Availability of the needed types of data in each of the 10 proposed metropolitan areas. (Continued on next page.)
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Figure B.12. Availability of the needed types of data in each of the 10 proposed metropolitan areas. (Continued from previous page.)
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methodologies. The fact that the data-rich and data-poor 
model validation was only performed in one region is a major 
motivation for this validation task. Performing the validation 
using the same data processing and estimation methodologies 
as L03 tests the validity of the developed models for different 
regions and time periods. On the other hand, performing the 
validation using different processing methodologies and 
assumptions tests the model’s sensitivity to the way the inputs 
are generated.

To address both forms of validation, this section is centered 
on a core validation analysis plan, which adheres as closely as 
possible to the L03 process, but also contains a set of supple-
mental experiments. Each of the 9 tasks contained in this sec-
tion lists the inputs, outputs, and steps that will be used to 
perform the model validation as it was done in L03. Where rel-
evant, supplemental experiments that generate separate data 
sets or perform other validation activities are listed. The goal 
of this structure is to assess the strengths and weaknesses of 
the L03 data-rich and data-poor models and the degree to 
which the validation errors are a function of the independent 
variable estimation process. These findings will guide the 
enhancement tasks of the L33 project.

Task 1: Select Validation Freeway Sections

The application guidelines of the L03 data-rich and data-poor 
models specify the freeway section characteristics required to 
achieve valid model results. The freeway sections used for vali-
dation in L33 will meet the following criteria:

•	 Length of around 5 mi (range from 2 to 10 mi);
•	 Good data quality over a year;
•	 Monitored by point detectors with no more than an aver-

age spacing of 3/4 mi, or monitored by automated vehicle 
identification (AVI) technologies at the section origin and 
destination;

•	 No mid-section freeway-to-freeway interchanges or bottle-
necks; and

•	 Relative homogeneity in terms of traffic and geometric 
conditions.

Steps

1. Identify freeway segments with dense detector spacing.
2. Identify sections along the densely monitored segments 

that have a consistent number of lanes, have no mid-section 
freeway-to-freeway interchanges, and are approximately 
5-mi long.

3. Identify yearlong periods with good data quality (average 
percent observed exceeding 75%).

4. Visually assess detector data to identify calibration issues.

Task 2: Quality-Control and Aggregate  
Traffic Data

In this step, the 5-min level traffic data available at the pro-
posed study sites are aggregated to the section level and fil-
tered to exclude data samples with poor quality. The required 
steps depend on the technology used to collect the traffic 
data; as such, separate steps are presented for point detector 
data and the toll tag travel times proposed for validation in 
the San Francisco Bay Area. The quality-control and aggre-
gation plan for the point detector data is nearly identical to 
that used by L03, with the exception that, in L33, quality con-
trol has already been performed by upstream data collection 
systems according to L02 recommendations. For the toll  
tag data, the L03 final report does not suggest that any filter-
ing was performed on the data. Because toll tag travel times 
are highly influenced by the presence of outlier data samples, 
the L33 team is currently performing exploratory analysis  
to identify an appropriate filtering and quality-control 
algorithm.

Point Detector Data

Inputs

•	 At least a year of 5-min detector station volumes (summed 
across all lanes) and speeds (volume-weighted average 
across all lanes) that have been quality controlled, cleaned, 
and imputed according to methodologies from the SHRP 2 
L02 guide.

Outputs

•	 At least a year of 5-min section vehicle miles traveled 
(VMT), vehicle hours traveled (VHT), speed, travel time 
index (TTI), and travel times.

steps

1. Calculate 5-min VMT and VHT at each detector station 
(link) using the link’s length (the distance halfway to the 
nearest neighboring stations in the upstream and down-
stream directions):
a. Link VMT = link length * 5-min volume, and
b. Link VHT = link VMT/(Min(60 mph, 5-min speed)).

2. Aggregate the link-level data to section-level 5-min VMT, 
VHT, space mean speed (speed), TTI, and travel time:
a. Section VMT = sum of link VMTs,
b. Section VHT = sum of link VHTs,
c. Section speed = Section VMT/Section VHT,
d. Section TTI = Max(1.0, 60 mph * (1/Section speed)), and
e. Section travel time (mins) = Section TTI * Section length.

3. Flag 5-min data points when less than 50% of the section’s 
detectors data were not working. These data points will be 
excluded from all downstream analysis.
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supplemental QualIty-COntrOl experIments

•	 Use a higher data-quality threshold in generating the section-
level data by flagging 5-min data points when less than 90%  
of the section’s detectors were not working. Assess the differ-
ence in the validation results in Task 9.

•	 Calculate the free-flow speed along each section and use 
that in the TTI equations, instead of 60 mph. Assess the 
difference in the validation results in Task 9.

Toll Tag Travel Times (San Francisco Bay Area Only)

Inputs

•	 At least a year of 5-min mean, median, minimum, 25th-
percentile, 75th-percentile, and maximum travel times, 
and number of measured samples; and

•	 5-min detector station volumes.

Outputs

•	 5-min quality-controlled median travel times.

steps

•	 To be determined following exploratory analysis currently 
underway by Iteris and Arizona State University.

supplemental Data COlleCtIOn teChnOlOgy experIments

•	 Collect toll tag travel times and point detector travel times 
on the same section. Assess the difference in the validation 
results in Task 9.

Task 3: Calculate the Peak Hour  
and Peak Period (Data-Rich Only)

This step is required to identify each section’s peak hour and 
peak period in order to group data into the data-rich study time 
periods. The steps outlined below adhere to those used in L03.

Peak Hour

Inputs

•	 5-min section speeds from Task 2.

Outputs

•	 Peak 60-min time period for each section, and
•	 Average 5-min weekday speeds over a year for each section.

steps

1. Subset each section’s data to include only non-holiday 
weekdays.

2. For each 5-min period, calculate the weekday average 
space-mean section speed.

3. For each section, identify the 12 consecutive 5-min periods 
that have the lowest average space mean speed.

Peak Period

Inputs

•	 5-min average weekday speeds from peak hour calculation.

Outputs

•	 Peak time period (of at least 75 min) for each section.

steps

•	 Identify time periods of at least 75 min where the average 
section speeds are less than or equal to 45 mph. If there are 
none, identify the 75 consecutive minutes that have the low-
est average section speeds.

Supplemental Time Period Definition Experiments

•	 Test different definitions of the peak period.

Task 4: Calculate Travel Time 
Reliability Measures

The purpose of this task is to use the section-level traffic 
data from Task 2 and the peak hour/peak period defini-
tions from Task 3 to generate yearly section travel time 
reliability measures for use in validation. The L03 models 
were developed to estimate volume-weighted travel time 
reliability measures. The L33 team plans to duplicate this 
methodology.

Inputs

•	 5-min section data from Task 2, and
•	 Peak hour and peak period definitions from Task 3 (data-

rich only).

Outputs (For Each Section and Time Period)

•	 Mean TTI;
•	 Percentile TTIs (10th, 50th, 80th, 95th, and 99th);
•	 On-time statistics [percentage of trips (VMT) made within 

1.1x the median travel time and within 1.25x the median 
travel time]; and

•	 Failure statistics [percentage of trips (VMT) with speeds 
less than 50 mph, 45 mph, and 30 mph].

Steps

1. Group 5-min section data into the L03 model time periods 
(data-rich only):
a. Peak hour: defined in Task 4;
b. Peak period: defined in Task 4;
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c. Midday: Non-holiday weekdays from 11:00 a.m. to 
2:00 p.m.; and

d. Weekdays: Non-holiday weekdays, 24 h.
2. Calculate the outputs using VMT-weighting (consider the 

VMT in the frequency of each TTI weighting).

Task 5: Calculate Demand-to-Capacity  
Ratio Variables (Data-Rich Only)

This task consists of four subtasks: (1) calculate link capacity; 
(2) calculate link demand; (3) calculate section critical 
demand-to-capacity ratio; and (4) calculate section average 
demand-to-capacity ratio.

Task 5.1: Calculate Link Capacity

The L03 project team obtained the capacity of each link from 
the Highway Performance Monitoring System (HPMS) wher-
ever it was provided. On sections where the capacity was not 
listed in HPMS, it was calculated using the capacity method 
for planning applications from Dowling et al.’s 1997 report, 
which considers the number of lanes, the percentage trucks, 
and the peak hour factor (which was fixed in L03). The L33 
team plans to duplicate this approach during validation.

Inputs

•	 Number of lanes;
•	 Truck percentage; and
•	 Peak Hour Factor.

Outputs

•	 Link capacity by time period.

steps

•	 Calculate capacity using NCHRP 387 methodologies.

supplemental CapaCIty-estImatIOn experIment

•	 Experiment with other capacity-estimation methodolo-
gies to be determined through exploratory analysis.

Task 5.2: Calculate Link Demand

The L03 project team assumed that when speeds fall below 
45 mph on an urban freeway the measured volume is not an 
accurate estimate of the demand. The L33 team plans to 
implement the procedure that the L03 team developed to 
estimate the demand during congested conditions. The L33 
team will evaluate the estimation results and explore alterna-
tive methods if the L03 method proves deficient.

Inputs

•	 5-min link volumes and speeds.

Outputs

•	 5-min link demand.

steps

1. For each station, identify continuous 5-min periods when 
the measured speed falls below 45 mph. During these time 
periods, the link is assumed to be in congestion and the 
measured volume not representative of the demand. 
Single 5-min gaps during which speeds exceed 45 mph 
can still be included.

2. Split each congested time period into two halves.
3. The demand during the first half of congestion is assumed 

to be equal to the average volume measured in the two 
5-min periods before the start of congestion.

4. The demand during the second half of congestion is set 
such that the cumulative volume measured over the con-
gested period is equal to the estimated cumulative demand 
over the same time period.

5. Check that the two 5-min periods after the termination of 
congestion fit smoothly to observed cumulative volume 
curve. If they do not, extend the congested period to 
ensure a smooth transition.

Task 5.3: Calculate Section Critical  
Demand-to-Capacity Ratio

The data-rich models for the peak hour, peak period, and mid-
day time periods all require the critical demand-to-capacity 
ratio. The L33 project team plans to compute this ratio using 
the L03 methodology, outlined here.

Inputs

•	 Link capacities from Task 5.1.
•	 5-min link demands from Task 5.2.

Outputs

•	 For each section and time period (peak hour, peak period, 
and midday), the critical demand-to-capacity ratio.

steps

1. For each link, calculate the demand during each weekday 
time period (peak hour, peak period, and midday).

2. Calculate the 99th-percentile demand-to-capacity ratio for 
each link over all time periods in the year.

3. For a section, choose the highest 99th-percentile demand-
to-capacity ratio among all the links on the section as the 
independent variables.

Task 5.4: Calculate Section Average  
Demand-to-Capacity Ratio

The data-rich weekday models require the average demand-
to-capacity ratio of each section. The L33 project team 
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plans to compute this ratio using the L03 methodology, 
outlined here.

Inputs

•	 Link capacities from Task 5.1.
•	 5-min link demands from Task 5.2.

Outputs

•	 For each section and time period, the average demand-to-
capacity ratio for a section.

steps

•	 For each link, calculate the demand-to-capacity ratio dur-
ing each time period.

•	 For a section, calculate the average demand-to-capacity 
ratio across all of the links on the section during the time 
period.

Task 6: Calculate Incident-Lane-Hours-Lost 
Variable (Data-Rich Only)

All of the peak hour and peak period models, and some of the 
weekday models, require the yearly incident-lane-hours-lost. 
L03 calculated these values wherever possible from the raw 
incident data. The L33 project team plans to use this approach, 
outlined below.

Inputs

•	 Raw, time-stamped incident data collected within the 
metro politan area.

Outputs

•	 For each section, incident-lane-hours-lost by time period 
over a year.

Steps

1. Using the incident location data, subset the raw incidents 
to those that occurred on the section.

2. For each time period, subset the incidents to those that 
started in or 15 min before, ended in, or spanned the entire 
time period.

3. For the portion of each incident that occurred during a 
time period, calculate the lane-hours-lost caused by the 
incident using information on the lane blockage and inci-
dent duration. If lane blockage and/or incident duration 
is not available in the incident data set, estimate them 
using L03 final report equations that estimate these values 
based on the agency incident clearance policies and the 
presence of shoulders.

4. For each section and time period, calculate the total 
incident-lane-hours-lost over the year as the indepen-
dent variable.

Supplemental Analysis of Incident Data

•	 Use work zone data to calculate a work zone lane-hours-
lost term. Assess how the addition of this term into the 
incident-lane-hours-lost variable affects the model perfor-
mance in Task 9.

•	 Use detailed incident and collision data sets to validate the 
L03 equations for
44 Ratio of the incident rate to the crash rate (4.545); and
44 Average number of lanes blocked per incident: (a) with 
usable shoulder and policy to move lane-blocking inci-
dents as quickly as possible (0.476); (b) with usable 
shoulder and no policy to move lane-blocking incidents 
(0.580); and (c) no usable shoulders (1.140).

Task 7: Calculate Hours of Precipitation 
Exceeding 0.05 in. (Data-Rich Only)

Some of the peak hour and peak period L03 data-rich models 
require inputs of the yearly number of hours of precipitation 
that exceeded 0.05 in. The L03 methodology leveraged hourly 
precipitation data from the National Climatic Data Center. This 
data source will also be used in L33, and processed as follows.

Inputs

•	 Hourly precipitation values at weather stations down-
loaded from the National Climatic Data Center.

Outputs

•	 For each section and time period, the number of hours of 
precipitation exceeding 0.05 in., for input as an indepen-
dent variable into the data-rich model.

Steps

1. Pick the weather station that is closest to a section.
2. Download the hourly precipitation data.
3. For each time period, calculate the number of hours when 

the precipitation exceeded 0.05 in.

Task 8: Validate Data-Rich  
and Data-Poor Equations

In this step, the independent variables are input into the L03 
data-rich and data-poor equations, and outputs are compared 
with the actual reliability measures calculated in Task 4.
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Inputs

•	 Critical demand-to-capacity ratio for each section during 
the peak hour, peak period, and midday period (output of 
Task 5.3).

•	 Average demand-to-capacity ratio for each section on 
weekdays (output of Task 5.4).

•	 Number of hours when rainfall exceeds 0.05 in. for each 
section during the peak hour and peak period (output of 
Task 7).

•	 Incident-lane-hours-lost for each section during the peak 
hour, peak period, and weekday time periods (output of 
Task 6).

•	 The mean travel time, 10th-, 50th-, 80th-, 95th-, and 99th-
percentile travel times, the percentage of on-time trips made 
within 1.1 and 1.25 times the median TTI, and the percent-
age of on-time trips with 30-, 45-, and 50-mph speed thresh-
olds for each section and time period (outputs of Task 4).

Outputs

•	 For each section and model, the percentage error between 
the predicted and measured reliability metrics.

•	 For each model, the root mean square error across all 
sections.

•	 Where possible, test the statistical significance of the com-
parison between measured and predicted reliability metrics.

Validation Steps

To understand the performance of the data-rich and data-
poor models across the regions proposed in the data collec-
tion plan, the L33 project team plans to focus validation efforts 
on the following travel time reliability statistics predicted by 
the L03 models:

•	 80th-percentile TTI (data-poor and data-rich, all time 
periods);

•	 95th-percentile TTI (data-poor and data-rich, all time 
periods); and

•	 Standard deviation (predicted by data-poor model only).

The team believes that focusing on these measures will pro-
vide ample insight into the performance of the L03 model 
forms, while allowing more resources to be spent collecting data 
and processing data from a wide range of sites. This will allow 
the L33 team to assess application guidelines for the L03 models 
while also gaining insight into potential model enhancements.

For the data-poor prediction, the L03 project team initially 
used power form models to relate the mean TTI with the 
reliability-related TTIs. However, these equations were revised 
in Appendix H of the L03 final report. The final L03 data-poor 

equations for the 80th-percentile TTI, 95th-percentile TTI, 
and the standard deviation are as follows:

80th-percentile TTI 1 2.1406 ln meanTTIp ( )= +

95th-percentile TTI 1 3.6700 ln meanTTIp ( )= +

standard deviation of TTI 0.71 meanTTI 1 0.56( )= −

In these revisions, the L03 team changed the form of the per-
centile equations to assume that the 80th- and 95th-percentile 
TTIs are related to the log of the mean TTI. The standard devia-
tion equation keeps the power form, but modifies the coeffi-
cient from the original equations. The L33 team plans to validate 
the three final L03 data-poor equations shown above.

For the data-rich prediction, there are four equations that 
predict each reliability measure, one for each of the following 
time periods: (1) peak hour, (2) peak period, (3) midday, and 
(4) weekday. The data-rich equations that will be validated 
are as follows:

peak hOur

95th-percentile TTI 0.63071 dc 0.01219 ILHL 0.04744 Rain05Hrscrite p p p= + +

p p80th-percentile TTI 0.52013 dc 0.01544 ILHLcrite= +

peak perIOD

p p p95th-percentile TTI 0.23233 dc 0.01222 ILHL 0.01777 Rain05Hrscrite= + +

p p80th-percentile TTI 0.13992 dc 0.01118 ILHL Rain05Hrscrite= + +

mIDDay

p95th-percentile TTI 0.07812 dccrite=

p80th-percentile TTI 0.02612 dccrite=

WeekDay

p p p95th-percentile TTI 0.03632 dc 0.00282 ILHLaveragee=

p p80th-percentile TTI 0.00842 dc 0.00117 ILHLaveragee= +

To validate the data-poor and data-rich equations listed 
above, the L33 team will calculate the following performance 
measures:

•	 Root mean square error (RMSE)
Denote the predicted response values as ŷ , real response 

values as y, then the residual r is defined as

= −ˆr y y
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RMSE is defined as

ˆ ˆ 2
2

1RMSE MSE y E y y
r

n
i

n∑( ) ( )= = −  = =

RMSE can measure the magnitude of differences between 
the predicted and actual responses. However, there is no sim-
ple benchmark or threshold for an acceptable RMSE.
•	 Residual plots

Ideally, residual r is a random variable following a normal 
distribution with zero mean. Plotting out the distribution of 
residuals provides direct impression of the goodness of fit, 
presence of bias, and heteroscedasticity.
•	 Standard t-test of zero residual mean

The standard t-test can be used to determine if the mean of 
residuals is significantly different from zero (in a statistical 
sense). With an unbiased model, the difference should be sta-
tistically insignificant.

= − µ0
t

r

s n

where r– is the residual mean, s is the standard deviation of 
residuals, n is the sample size, and µ0 is the specific mean 
value targeted, set as zero.

The end goals of the quantitative validation efforts are to 
determine: (1) How good are the L03 models? and (2) When 
and where can they be applied? To evaluate these questions, 
the L33 team will compare the log of residual variance as a 
measure of fit. When this measure is low then the model fits 
well; when high it fits poorly. This comparison will reveal how 
well the models perform during different time periods (peak 
versus non-peak), for different types of sections (e.g., num-
ber of lanes), and across different regions with varying 
weather conditions and driver populations. The results of this 
analysis will be used to develop application guidelines for the 
existing L03 models and recommendations for changes to be 
explored in model enhancement.

Task 9: Sensitivity Testing on Alternative 
Data Processing Approaches

This analysis plan contains a number of places in the analysis 
chain where the L33 team would like to explore alternate 

methods of performing the data processing or independent 
variable computations. Pursuing these methods will produce 
multiple validation data sets on some sections. After Task 8 is 
performed on each data set, the validation results can be 
compared to gauge the sensitivity of the models to the vari-
ous data processing alternatives.

Conclusions

This validation plan proposes to perform validation of the 
L03 models using data collected at up to 250 different freeway 
section-year combinations located in nine metropolitan 
areas. In comparison, the model validation performed in L03 
used data from 60 section-years in a single metropolitan area. 
The traffic data model inputs and measured reliability statis-
tics will be gathered from agency detector data feeds as was 
done in L03, though no L03 data will be used in the L33 vali-
dation process. The incident-lane-hours-lost variable will be 
computed using dispatch and agency incident, crash, and 
work zone data sets. The L03 team used only incident data 
collected by the private sector in calibration and validation. 
Using agency incident data in L33 will allow for the assess-
ment of model fit and development of application guidelines 
using data sets more likely to be used by agencies that are 
implementing the predictive models. The weather data used 
in L33 validation will be of the same form as that used in L03 
hourly precipitation data from the National Climatic Data 
Center, though the L33 team is also exploring more spatially 
and temporally fine-grained weather data sets for enhance-
ment tasks.

This experimental design presented in this validation plan 
will allow the L33 team to confidently assess how well the 
data-rich and data-poor models predict travel times in different 
metropolitan areas. The core validation and the supplemental 
validation experiments will yield information that will enable 
the L03 team to identify and prioritize potential enhancements 
to the L03 models, such as the estimation of new coefficients or 
the development of new model forms.

Reference
Dowling, R., W. Kittelson, J. Zegeer. 1997. NCHRP Report 387: Planning 

Techniques to Estimate Speeds and Service Volumes for Planning 
Applications. Transportation Research Board, National Research 
Council, Washington, D.C.
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Overview

This appendix presents the validation analysis of the L03 data-
rich models. Pages 143–145 of the L03 report contain six model 
equations that predict the following travel time index (TTI) 
reliability statistics (http: //www.trb.org/Main/Blurbs/166935 
.aspx):

•	 mean TTI; and
•	 99th-, 95th-, 80th-, 50th-, and 10th-percentile TTI.

In the L03 project, these models were termed “data-rich” 
because they predict a wide set of reliability measures based 
on different combinations of four data variables:

•	 dccrit, the critical demand-to-capacity (D/C) ratio on the 
study section;

•	 dcaverage, the average D/C ratio on the study section;
•	 ILHL (incident-lane-hours-lost), the annual lane hours 

lost because of incidents on the study section, during the 
analysis time slice; and

•	 Rain05Hrs, the annual hours of rainfall ≥0.05 in. on the 
study section, during the analysis time slice.

The L03 project calibrated these data-rich models using data 
collected in a number of metropolitan areas, but only validated 
the models on roadway sections in the Seattle metropolitan 
area. The goal of this stage of the L33 project is to quantify the 
effectiveness of these models using new data sets collected from 
around the country.

The rest of this appendix is organized as follows. Section 2 
presents the validation procedure, including the data gather-
ing and the techniques used to measure the effectiveness of 
the L03 data-rich models. Section 3 presents the validation 
results for each time slice, including results for the model 
overall and by region. Finally, Section 4 summarizes the con-
clusions. There is also an attachment that contains detailed 
regional validation results.

Validation Procedure

Models

There are six L03 data-rich models per analysis time slice 
(peak period, peak hour, weekday, and midday), resulting in 
a total of 24 data models to be validated. The models to be 
validated in this task are as follows:

Peak Period Models

1. = ( )∗ + ∗ + ∗meanTTI 0.09677 dc 0.00862 ILHL 0.00904 05crite Rain Hrs

2. 99th-percentile TTI 0.33477 dc 0.012350 ILHL 0.025315 Rain05Hrscrite= ( )∗ + ∗ + ∗

3. = ( )∗ + ∗ + ∗95th-percentile TTI 0.23233 dc 0.01222 ILHL 0.01777 Rain05Hrscrite

4. = ( )∗ + ∗ + ∗80th-percentile TTI 0.13992 dc 0.01118 ILHL 0.01271 Rain05Hrscrite

5. = ( )∗ + ∗50th-percentile TTI 0.09335 dc 0.00932 ILHLcrite

6. = ( )∗ + ∗10th-percentile TTI 0.01180 dc 0.00145 ILHLcrite

Peak Hour Models

1. = ( )∗ + ∗ + ∗mean TTI 0.27886 dc 0.01089 ILHL 0.02935 Rain05Hrscrite

2. = ( )∗ + ∗99th-percentile TTI 1.13062 dc 0.01242 ILHLcrite

3. = ( )∗ + ∗ + ∗95th-percentile TTI 0.63071 dc 0.01219 ILHL 0.04744 Rain05Hrscrite

4. = ( )∗ + ∗80th-percentile TTI 0.52013 dc 0.01544 ILHLcrite

5. = ( )∗ + ∗50th-percentile TTI 0.29097 dc 0.0138 ILHLcrite

6. = ( )∗ + ∗10th-percentile TTI 0.07643 dc 0.00405 ILHLcrite

A P P e n d i x  C

Data-Rich Validation

http://www.trb.org/Main/Blurbs/166935.aspx
http://www.trb.org/Main/Blurbs/166935.aspx
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Midday Models

1. mean TTI 0.2599 dccrite= ( )∗

2. 99th-percentile TTI 0.19167 dccrite= ( )∗

3. 95th-percentile TTI 0.07812 dccrite= ( )∗

4. 80th-percentile TTI 0.02612 dccrite= ( )∗

5. 50th-percentile TTI 0.01134 dccrite= ( )∗

6. 10th-percentile TTI 0.00389 dccrite= ( )∗

Weekday Models

1. mean TTI 0.00949 dc 0.00067average= ( )∗ + ∗e ILHL

2. 99th-percentile TTI 0.07028 dc 0.00222 ILHLaveragee= ( )∗ + ∗

3. 95th-percentile TTI 0.03632 dc 0.00282 ILHLaveragee= ( )∗ + ∗

4. 80th-percentile TTI 0.00842 dc 0.00117 ILHLaveragee= ( )∗ + ∗

5. 50th-percentile TTI 0.0021 dcaveragee= ( )∗

6. 10th-percentile TTI 0.00047 dcaveragee= ( )∗

Root mean square error (RMSE) and the alpha level of the 
model coefficients are the only model fit statistics presented 
in the L03 report for each of these models. Without the full 
model fit outputs, much of the L33 validation had to focus on 
evaluating the extent to which these models adhere to the 
assumptions required for generalized regression.

Data

The data used in the validation were collected from the Los 
Angeles, San Francisco Bay Area, Sacramento, and San Diego 
metropolitan regions (grouped together into a “California” 
data set); Minneapolis–St. Paul, Minnesota; Salt Lake City, 
Utah; and Spokane, Washington. Details about the study seg-
ments, data sets, and data processing techniques are provided 
in the L33 Validation Plan report. The California, Salt Lake 
City, and Spokane data were collected from the 3-year period 
between January 1, 2010, and December 31, 2012. The Min-
nesota data were collected from the 3-year period between 
June 1, 2009, and May 31, 2012.

Validation was performed using data collected on week-
days during the following analysis time slices:

1. Peak period: a continuous time period of at least 75 min 
during which the space mean speed is less than 45 mph;

2. Peak hour: a continuous 60-min period during which the 
space mean speed is less than 45 mph;

3. Midday period: 11:00 a.m.–2:00 p.m.; and
4. Weekday period: 12:00 a.m.–11:55 p.m.

This is consistent with the time periods that L03 used to cali-
brate and validate the data-rich models.

Table C.1 summarizes the sample size of data by region and 
time period used in the validation. Each value represents the 
number of section-years for which the D/C ratios, ILHL, rain, 
and TTI reliability statistics were calculated from the col-
lected data. Only the highlighted cells in Table C.1 were used 
in the data-rich validation analysis, as these were the loca-
tions and time periods that had a sufficient sample size for 
analysis. In the validation, the input variables were plugged 
into the model equations to calculate the TTI reliability sta-
tistics, which were then compared to the measured values.

Table C.1 shows that far fewer section-year data points 
were generated for the peak period and peak hour time slices 
than for the midday and weekday time slices. This is because 
many segments did not meet the L03 definition of having a 
peak period or peak hour. In Spokane, none of the sections 
met these criteria. In Salt Lake City, only seven section-years 
met these criteria. This reduces the regional variation among 
the validation data sets, and suggests that the peak period 
definition needs to be re-evaluated in the model enhance-
ment stage. In addition to the lack of a notable peak period in 
the Spokane and Salt Lake City data sets, in general, the travel 
times in these data sets exhibited much less variation and 
unreliability than in the California (CA) and Minnesota 
(MN) sites. This should be kept in mind when evaluating the 
validation results.

Measures

For each model, the goals of the validation were to quantify 
the model error and determine whether the model follows 
the key assumptions of generalized regression. This section 
first describes the method of determining the prediction 
error and then presents the performance measures that were 
evaluated.

Table C.1. Final Data-Rich Validation Sample 
Sizes (Section-Years)

Site
Peak 

Period
Peak 
Hour Midday Weekday

CA 43 43 140 142

MN 19 25 60 60

Salt Lake City 3 4 32 30

City of Spokane 0 0 9 11

All Data 65 72 241 243
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Performance Measures

Root Mean SquaRe eRRoR

Because the data-rich models are in the exponential form, 
the prediction error is defined differently here than it was for 
the data poor validation. The research team assumes that the 
data-rich models are produced by first taking the logarithm 
transformation of the response data and then fitting it with a 
linear regression model. This implicitly assumes that the error 
term in the exponential form model is multiplicative and not 
additive. This is a typical way to develop a regression model 
for log-normally distributed data.

Denote the predicted response values from the model as ŷ 
and the measured response values as y. The linear regression 
model form is

ln ŷ X( ) = β

The prediction error (residual) r is thus defined as:

ln ˆ ln (C.1)r y y( ) ( )= −

A positive mean r implies that the model systemically over-
estimates values based on new data.

Because the data-rich models are in exponential form and 
built by using the logarithm transformation of reliability 
measurements and linear regression method, the error (resid-
ual) defined above is a multipliable term in the form of er. 
Taking the exponential function for both sides of Equation 1 
leads to the following Equation 2:

ˆ (C.2)y ye r= −

or equally,

ˆ
e

y

y
r =

Then, subtracting 1 from both sides of the equation, the 
formula for the percent deviation of the predicted TTI reli-
ability metric from its measured value is obtained. That is,

1
ˆ

e
y y

y
r

( )− = −

This definition states that the data-rich model overestimates 
or underestimates the response variable by a percentage of  
(er - 1) * 100% compared to the measured data. Note that 
when r is close to zero, er - 1 ≈ r.

In the rest of this appendix, the RMSE values presented are 
the modified RMSE values, calculated according to the fol-
lowing procedure:

•	 The ordinary RMSE values are calculated using the residual 
defined as r = ln(ŷ) - ln(y);

•	 The redefined RMSE is calculated by RMSE′ = eRMSE - 1; 
and

•	 The presented values are RMSE′ * 100%, which is referred 
as RMSE in the rest of this data-rich model validation 
appendix.

Note that the statistical analysis tables and the residual plots 
are produced using r, because it is r that needs to satisfy the 
linear regression assumptions.

Student’S t-teSt

The one sample Student’s t-test can be used to determine if 
the mean of the residuals is significantly different from zero 
in a statistical sense, which tests for systematic bias. With an 
unbiased model, the difference should be statistically insig-
nificant. The t-value is calculated as

0= − µ
t

r

s n

where r– is the residual mean, s is the standard deviation of 
residuals, n is the sample size, and µ0 is the specific mean 
value for comparison, set here to be zero. To draw a conclu-
sion, if the calculated t value is larger than some threshold ta 
(e.g., a = 5%) using a two-tailed t distribution table, the null 
hypothesis that the residuals have a mean of zero can be 
rejected with (1 - a) level of confidence. Or, say that the 
residual mean is significantly different from zero at a level of 
probability. If the corresponding p value is used to draw a 
conclusion, it means that if the null hypothesis were correct, 
then we would expect to obtain such a large t value on at most 
p percentage of occasions. For the validation, we use a 90% 
level of confidence.

ShapiRo-Wilk noRMality teSt

The Shapiro-Wilk test can be used to determine whether the 
distribution of the residuals is significantly different from the 
normal distribution in a statistical sense. The null hypothesis 
in this test states that the residuals are normally distributed. 
To draw a conclusion, if the p-value is less than a threshold, 
the null hypothesis that the residuals are normally distributed 
can be rejected with (1 - a) level of confidence. The threshold 
used here is a = 10%.

ReSidual plotS

Ideally, residual r is a random variable that follows a normal 
distribution with zero mean. Plotting out the distribution of 
residuals allows for an assessment of the goodness of fit and 
the likelihood of the presence of bias and heteroscedasticity 
(unequal variance).
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data-Rich Model Validation

The data-rich models are categorized as peak period, peak 
hour, midday, and weekday models. For each category, there 
are six models for the different travel time reliability mea-
sures: mean TTI, 99th-percentile TTI, 95th-percentile TTI, 
80th-percentile TTI, 50th-percentile TTI, and 10th-percentile 
TTI. The following subsections are named as “time period—
reliability measure—region of the data set.” Tables and fig-
ures for all data are shown in these subsections, while tables 
and figures for specific regions are shown in the attachment 
(Tables C.52 to C.111 and Figures C.73 to C.252).

Peak Period

Peak Period—Mean TTI

peak peRiod—Mean tti—all data

Table C.2 presents the summary of the RMSE for this cate-
gory. The largest RMSE appears in the CA data in the peak 
period mean TTI model validation. The RMSE for MN data 
is relatively small. Since the CA data account for the largest 
portion of the AllData set, the RMSE for AllData is also rela-
tively large. These RMSE values only present a general impres-
sion of the model performance; further investigation on the 
residual analysis results provides more details on the model 
performance.

Table C.3 presents the statistical analysis of residuals result-
ing from predicting the validation data with the data-rich 
peak period mean TTI model. Ideally, the residuals should 
follow a normal distribution with a mean of zero. As shown 
in Table C.3.c, the Student’s t-test for zero residual mean 
yields a p-value of 0.0119, meaning that we can reject the null 
hypothesis of zero residual mean with a confidence level of 
90%. The Shapiro-Wilk normality test (Table C.3.d) rejects 
the hypothesis that the residuals follow a normal distribution 
as the p-value is less than 0.0001. The same conclusion can be 
drawn by observing the normality plot.

From the plot of residuals versus the predicted mean TTI 
(Figures C.1 through C.3), we can see that the residuals have 
an increasing trend where the maximum residual is reached 
at the largest predicted response value, and when the predicted 
value is smaller than approximately 0.5 the model tends to 
underestimate the response variable. This nonrandom pattern 
indicates that the data-rich model cannot perfectly predict the 
validation data and may be improved.

Table C.2. RMSE of Peak  
Period—Mean TTI

RMSE All Data CA MN

Mean TTI 96.94% 127.55% 21.59%

Table C.3. Residual Analysis of Peak 
Period—Mean TTI—AllData

Table C.3.a. Basic Statistical Measures

Location Variability

Mean 0.2086 Std deviation 0.6499

Median -0.007 Variance 0.4223

Minimum -0.348 Range 3.0176

Maximum 2.6696 Interquartile range 0.3150

Table C.3.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5972 Pr < W <0.0001

Table C.3.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.5884 Pr > t 0.0119

Table C.3.b. Basic Confidence Limits  
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2086 0.0476 0.3697

Std deviation 0.6499 0.5542 0.7858

Variance 0.4223 0.3071 0.6174

Figure C.1. Residual plot of peak period—mean 
TTI—AllData.
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the models tend to underestimate the response variable as 
most residuals are under the zero reference line. These non-
random patterns show that the model fits the validation data 
unsatisfactorily. All the associated plots and results for CA 
region are included in the attachment.

peak peRiod—Mean tti—MinneSota

In MN, the residuals increase with the predicted values. This 
nonrandom pattern shows that the model has the potential to 
be improved. The statistical tests show that we cannot reject the 
zero residual mean hypothesis but can reject the null hypoth-
esis of normal distribution with a high confidence level. The 
histogram and the normality plot illustrate these conclusions. 
All the associated plots and results for MN region are included 
in the attachment.

Peak Period—99th-Percentile TTI

peak peRiod—99th-peRcentile tti—all data

The summary results for this category provided in Table C.4 
indicate that the estimation error for the CA data set is as 
large as 607.76%. As the CA data set constitutes the most part 
of the AllData set, the RMSE for the AllData set is also rela-
tively large (403.44%). The RMSE for the MN validation data 
set is 63.67%. This is relatively small compared to the AllData 
and the CA data sets but still indicates nonsatisfactory esti-
mation performance, since it means an estimation error as 
large as 63.67% of the measured value.

The residual plot (Figure C.4) in validation analysis of the 
99th-percentile TTI model using the AllData set shows a  
similar pattern to the validation of the mean TTI model using 
the same data set: residuals increase with the predicted value. 
Again, such nonrandom pattern shows that the model may 
have the potential for improvement. The normality plot 
shows that the residuals do not closely follow a normal distri-
bution, which is also indicated in the normality test as a 
p-value less than 0.0001. The Student’s t-test shows that the 
research team can reject the null hypothesis of zero residual 
mean with a confidence level of 90%. Table C.5 and Figures C.4 
to C.6 present these results.

peak peRiod—99th-peRcentile tti—califoRnia

The validation results for the peak period 99th-percentile TTI 
model using CA data set shows very similar pattern to that in 
the validation of percentile TTI model using AllData set. The 

Figure C.2. Residual histogram of peak period—
mean TTI—AllData.

Figure C.3. Residual normality plot of peak 
period—mean TTI—AllData.

peak peRiod—Mean tti—califoRnia

The residual plots in the peak period—mean TTI—CA looks 
similar to those in the AllData validation, since the CA vali-
dation data set accounts for most of the samples in the  
AllData set. The normality test result rejects the null hypothesis 
that the residuals follow a normal distribution. The Stu-
dent’s t-test for zero residual mean shows that we can reject 
the null hypothesis with a confidence level of 90%. The plot of 
residuals versus the predicted values shows an almost linear 
increasing relationship and tends to overestimate the mean TTI 
when the predicted value is larger than approximately 0.5. On 
the other hand, when the predicted value is smaller than 0.5, 

Table C.4. RMSE of Peak  
Period—99th-Percentile TTI

RMSE All Data CA MN

Mean TTI 403.44% 607.76% 63.67%



70

Figure C.4. Residual plot of peak period— 
99th-percentile TTI—AllData.

Table C.5. Residual Analysis of Peak 
Period—99th-Percentile TTI—AllData

Table C.5.a. Basic Statistical Measures

Location Variability

Mean 0.5030 Std deviation 1.5480

Median 0.0020 Variance 2.3963

Minimum -0.861 Range 7.4177

Maximum 6.5571 Interquartile range 0.9133

Table C.5.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6312 Pr < W <0.0001

Table C.5.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.6197 Pr > t 0.0110

Table C.5.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.5030 0.1194 0.8866

Std deviation 1.5480 1.3201 1.8717

Variance 2.3963 1.7427 3.5033

Figure C.5. Residual histogram of peak period— 
99th-percentile TTI—AllData.

Figure C.6. Residual normality plot of peak 
period—99th-percentile TTI—AllData.

zero residual mean hypothesis is rejected in the Student’s t-test, 
and the null hypothesis of normal distribution is rejected in the 
normality test. The histogram and normality plots also show 
that the residuals do not closely follow a normal distribution. 
The plot of residuals versus predicted response values shows an 
almost linear increasing pattern as the predicted value increases. 
All the associated results for CA region are included in the 
attachment.

peak peRiod—99th-peRcentile tti—MinneSota

In validating the 99th-percentile TTI model using the MN 
data set, the plot of residuals versus the predicted response 
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values does not indicate a good fit, evident from the increas-
ing trend of the scattered points. The Student’s t-test shows 
that the null hypothesis of zero residual mean can be rejected 
with a confidence level of 90%, while the Shapiro-Wilk nor-
mality test shows that null hypothesis of normal distribution  
cannot be rejected with 90% confidence level but can be rejected 
at a confidence level of 85%. All the associated results for MN 
region are included in the attachment.

Peak Period—95th-Percentile TTI

peak peRiod—95th-peRcentile tti—all data

The RMSE values for the peak period 95th-percentile TTI 
model are smaller than the corresponding values in the vali-
dation of the 99th-percentile TTI model. The largest value 
still comes from the CA data set, which is 359.19%, while the 
smallest is from the MN data, which is 45.85% as summarize 
in Table C.6.

The residual analysis for the 95th-percentile TTI model 
using AllData set shows that the Student’s t-test rejects the 
null hypothesis of zero residual mean, as the p-value is only 
0.0211. The Shapiro-Wilk rejects the null hypothesis of nor-
mal distribution with a high level of confidence (Table C.7). 
The residual plot (Figure C.7) shows a similar pattern as that 
in the previous models: the residual keeps increasing when 
the predicted value increases. The histogram and the normal-
ity plot (Figures C.8 and C.9) manifest the Shapiro-Wilk 
test result.

peak peRiod—95th-peRcentile tti—califoRnia

The residual analysis results produced in the CA data valida-
tion shows that the null hypothesis of zero residual mean in 
the Student’s t-test can be rejected with a confidence level of 
90%, and the null hypothesis of a normal distribution can also 
be rejected with a high confidence in the normality test, as 
demonstrated in the histogram and the normality plot. The 
residual keeps increasing as the predicted value increases. All 
the associated results and plots for the CA region are included 
in the attachment.

peak peRiod—95th-peRcentile tti—MinneSota

The residuals in the validation of the 95th-percentile model 
with the MN data set also present an increasing pattern in the 
residual plot. The Student’s test rejects the zero residual mean 
with an over 90% level of confidence, and the Shapiro-Wilk 

Table C.6. RMSE of Peak Period—
95th-Percentile TTI

RMSE All Data CA MN

Mean TTI 251.95% 359.19% 45.85%

Table C.7. Residual Analysis of Peak 
Period—95th-Percentile TTI—AllData

Table C.7.a. Basic Statistical Measures

Location Variability

Mean 0.3567 Std deviation 1.2161

Median -0.025 Variance 1.4789

Minimum -0.684 Range 5.7559

Maximum 5.0720 Interquartile range 0.5554

Table C.7.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.3567 0.0553 0.6580

Std deviation 1.2161 1.0371 1.4704

Variance 1.4789 1.0755 2.1622

Table C.7.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.3646 Pr > t 0.0211

Table C.7.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6160 Pr < W <0.0001

Figure C.7. Residual plot of peak period— 
95th-percentile TTI—AllData.
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The residual analysis results (Table C.9) show that the zero 
residual mean hypothesis can be rejected in the Student’s 
t-test with a confidence level of 90%. The Shapiro-Wilk nor-
mality test rejects the null hypothesis of normal distribution 
at a confidence level of 90%, as also demonstrated in the nor-
mality plot. The residual plot (Figure C.10) shows an increas-
ing trend in the residual value when the predicted response 
value increases. The residual histogram and normality plots 
are shown in Figures C.11 and C.12.

peak peRiod—80th-peRcentile tti—califoRnia

For the 80th-percentile TTI validation using CA data, the Stu-
dent’s t-test rejects the null hypothesis of zero residual mean 
with a confidence level of 90%. The Shapiro-Wilk normality 

Figure C.8. Residual histogram of peak period— 
95th-percentile TTI—AllData.

Figure C.9. Residual normality plot of peak period— 
95th-percentile TTI—AllData.

normality test rejects the normal distribution hypothesis also 
with a high confidence level. All the associated results and 
plots for MN region are included in the attachment.

Peak Period—80th-Percentile TTI

peak peRiod—80th-peRcentile tti—all data

For the 80th-percentile TTI (Table C.8), the largest RMSE is 
seen in the CA data set (206.54%) and the RMSE from the MN 
data set is much smaller, at 30.95%. From the 99th-percentile 
TTI validation to the 80th-percentile TTI validation, the RMSE 
for the AllData set has decreased. This is attributed to the fact 
that smaller percentiles result in smaller response variable 
range. However, one should note that the reduced RMSEs do 
not necessarily mean better model performance as it is not 
instructive to compare the models in this way.

Table C.8. RMSE of Peak Period—
80th-Percentile TTI

RMSE All Data CA MN

Mean TTI 151.95% 206.54% 30.95%

Table C.9.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5929 Pr < W <0.0001

Table C.9. Residual Analysis of Peak 
Period—80th-Percentile TTI—AllData

Table C.9.a. Basic Statistical Measures

Location Variability

Mean 0.2537 Std deviation 0.8954

Median -0.058 Variance 0.8018

Minimum -0.404 Range 4.0847

Maximum 3.6805 Interquartile range 0.4376

Table C.9.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2537 0.0319 0.4756

Std deviation 0.8954 0.7636 1.0827

Variance 0.8018 0.5831 1.1722

Table C.9.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.2845 Pr > t 0.0257
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confidence level of 90%. All the associated results and plots 
for MN region are included in the attachment.

Peak Period—50th-Percentile TTI

peak peRiod—50th-peRcentile tti—all data

For the 50th-percentile TTI validation, the RMSE values show 
a similar pattern to that in the previous models: the largest 
value comes from the CA data (Table C.10).

The Student’s t-test shows that the null hypothesis of zero 
residual mean can be rejected with a confidence level of 90% 
(Table C.11). The Shapiro-Wilk normality test result rejects 
the null hypothesis of normal distribution at a confidence 
level of 90%, which is also illustrated in the histogram (Fig-
ure C.14) and the normality plot (Figure C.15). The residual 
plot (Figure C.13) still shows an increasing trend similar to 
that in the previous models.

peak peRiod—50th-peRcentile tti—califoRnia

The Student’s t-test results show that the zero residual mean 
hypothesis can be rejected at a confidence level of 90%. The 
Shapiro-Wilk normality test result rejects the null hypothesis 
of normal distribution at the same threshold confidence level, 
which is also illustrated in the histogram and the normality 

Figure C.10. Residual plot peak period— 
80th-percentile TTI—AllData.

Figure C.11. Residual histogram of peak period— 
80th-percentile TTI—AllData.

Figure C.12. Residual normality plot of peak 
period—80th-percentile TTI—AllData.

test rejects the null hypothesis that the residuals follow a nor-
mal distribution at a confidence level of 90%. The residual plot 
shows a similar pattern to that in the AllData validation, with 
the residual increasing with the predicted value. This non-
random pattern indicates that it may be possible to improve 
the data-rich model performance. All the associated results and 
plots for the CA region are included in the attachment.

peak peRiod—80th-peRcentile tti—MinneSota

In MN, the residuals also show an increasing trend as the pre-
dicted response value increases. The Student’s t-test shows 
that the null hypothesis of zero residual mean cannot be 
rejected with a confidence level of 90% but can be rejected 
with a confidence level of 80%. The Shapiro-Wilk normality 
test shows that the null hypothesis that the residuals follow a 
normal distribution can be rejected with the preset threshold 

Table C.10. RMSE of Peak Period—
50th-Percentile TTI

RMSE All Data CA MN

Mean TTI 89.55% 116.63% 23.15%
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Figure C.15. Residual normality plot of peak 
period—50th-percentile TTI—AllData.

Figure C.14. Residual histogram of peak period— 
50th-percentile TTI—AllData.

Table C.11. Residual Analysis of Peak 
Period—50th-Percentile TTI—AllData

Table C.11.a. Basic Statistical Measures

Location Variability

Mean 0.2044 Std deviation 0.6106

Median -0.017 Variance 0.3729

Minimum -0.368 Range 2.8998

Maximum 2.5315 Interquartile range 0.2944

Table C.11.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2044 0.0531 0.3557

Std deviation 0.6106 0.5207 0.7383

Variance 0.3729 0.2712 0.5451

Table C.11.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.6990 Pr > t 0.0089

Table C.11.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6172 Pr < W <0.0001

Figure C.13. Residual plot of peak period— 
50th-percentile TTI—AllData.

plot. The plot of residuals versus the predicted values shows 
an increasing trend similar to that in the previous model vali-
dations. All the associated results and plots for the CA data 
are included in the attachment.

peak peRiod—50th-peRcentile tti—MinneSota

In MN, the Student’s t-test result shows that the null hypoth-
esis of zero residual mean cannot be rejected with a confi-
dence level of 90%, while the Shapiro-Wilk normality test 
result rejects the null hypothesis that the residuals follow a nor-
mal distribution. The increasing trend in the plot of residuals 
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versus the predicted values still exists, and the histogram and 
the normality plot demonstrates the normality test results that 
the residuals are not closely following a normal distribution. 
All the associated results and plots for the MN data are included 
in the attachment.

Peak Period—10th-Percentile TTI

peak peRiod—10th-peRcentile tti—all data

The RMSE values for the validation of peak period 10th-
percentile TTI data-rich model are all within 15% (Table C.12). 
However, as the 10th-percentile TTI data are within a small 
range themselves, the smaller RMSE values do not necessarily 
mean good model performance. Further investigation on the 
validation results for each data set is required.

The statistical validation using the AllData set shows that 
the zero residual mean hypothesis can be rejected with a con-
fidence level of 90% in the Student’s t-test, and the null 
hypothesis of normal distribution can be rejected with a con-
fidence level of 90% in the Shapiro-Wilk normality test 
(Table C.13). The plot of residual versus the predicted value 
(Figure C.16) shows the problem of an increasing trend of 
residuals as the predicted value increases, as well as the non-
constant residual variance problem. These nonrandom pat-
terns show that the model can potentially be improved further. 
The residual histogram and normality plots are shown in Fig-
ures C.17 and C.18.

peak peRiod—10th-peRcentile tti—califoRnia

Validation of the CA data set generally produces similar 
results to the validation using the AllData set. The residual 
plot shows the increasing trend and the nonconstant residual 
variance problems. The Student’s t-test cannot reject the zero 
residual mean hypothesis at the threshold confidence level of 
90% as the p-value is as large as 0.1820. The hypothesis that 
the residuals follow a normal distribution is rejected in the 
Shapiro-Wilk normality test with a confidence level of 90%, 
which is illustrated in the histogram and the normality plot. 
All the associated results and plots for the CA data are included 
in the attachment.

peak peRiod—10th-peRcentile tti—MinneSota

The MN data set validation results show that the assumption 
of zero residual mean is likely to be violated as the Student’s 
t-test yields a p-value less than 0.0001, while the null hypothesis 

Table C.12. RMSE of Peak 
Period—10th-Percentile TTI

RMSE All Data CA MN

Mean TTI 12.13% 14.43% 6.23%

Table C.13. Residual Analysis of Peak 
Period—10th-Percentile TTI—AllData

Table C.13.a. Basic Statistical Measures

Location Variability

Mean 0.0333 Std deviation 0.1104

Median 0.0303 Variance 0.0122

Minimum -0.344 Range 0.7344

Maximum 0.3906 Interquartile range 0.0600

Table C.13.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0333 0.0059 0.0606

Std deviation 0.1104 0.0941 0.1334

Variance 0.0122 0.0089 0.0178

Table C.13.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.4305 Pr > t 0.0179

Table C.13.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8479 Pr < W <0.0001

Figure C.16. Residual plot of peak period— 
10th-percentile TTI—AllData.
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that the residuals follow a normal distribution cannot be 
rejected in the Shapiro-Wilk normality test as the p-value is 
0.6593. The residual plot shows that the residuals are all posi-
tive except for one. Meanwhile, a nonrandom increasing trend 
is obvious in the residual plot. All the associated results and 
plots for the MN data are included in the attachment.

Conclusions of the Data-Rich  
Peak Period Model Validation

The peak period data-rich model validation analyzed six 
models built in L03 using three data sets: the CA data set, the 

MN data set, and the AllData set, which included all the avail-
able peak period data.

The validation analysis indicates that the most significant 
problem is the increasing residual trend shown in the residual 
plots. A good regression model should present randomly 
scattered residuals without obvious trends. Additionally, the 
validation results rarely satisfy the zero residual mean or the 
normally distributed residual assumptions. Overall, the model 
form is not adequate and there is room to improve the models 
for better performance.

Peak Hour

Peak Hour—Mean TTI

peak houR—Mean tti—all data

The RMSE values of the three data sets used to validate the 
peak hour mean TTI model are all close to 25%, implying 
that on average the predicted mean TTI has an error in the 
magnitude of approximately one-fourth of the mean TTI 
itself (Table C.14). The corresponding RMSE in L03, at 
26.4%, is of the same magnitude. Note that when comparing 
the L03 RMSE value with the validation RMSE values, the 
research team needs to keep in mind that the definition of 
RMSE in L33 may not be the same at that used in the L03, 
because of the limited knowledge of how the regression mod-
els were developed in L03.

The residual analysis presents relatively satisfying results 
(Table C.15). The Student’s t-test for the zero residual mean 
and the Shapiro-Wilk normality test both yield p-values 
larger than 0.1, indicating that the research team does not 
have strong evidence to reject the null hypotheses that the 
residuals satisfy the zero residual mean and the normal distri-
bution assumptions. The residual versus the predicted value  
plot (Figure C.19) generally presents a random pattern, 
although it may have a slight tendency of overestimation  
when the predicted value is large. The histogram (Figure C.20) 
and the normality plot (Figure C.21) both show that the resid-
uals approximately display a normal distribution pattern. 
Overall, this data-rich model generally performs well given 
the above analysis.

peak houR—Mean tti—califoRnia

The validation using the CA data set yields similar results to 
that using the AllData set. The Shapiro-Wilk normality test 

Figure C.18. Residual normality plot of peak 
period—10th-percentile TTI—AllData.

Figure C.17. Residual histogram of peak period— 
10th-percentile TTI—AllData.

Table C.14. RMSE of Peak Hour—
Mean TTI

RMSE All Data CA MN

Mean TTI 25.45% 26.97% 24.68%
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shows that the null hypothesis of normal distribution cannot 
be rejected with the threshold confidence level of 90%. The 
Student’s t-test rejects the null hypothesis of zero residual 
mean with a high confidence level, which corresponds to the 
fact that the 95% confidence limits for the mean of residual 
both fall on the negative side. The residual versus the predicted 
value plot presents no strong unusual pattern except for a 
potential slight tendency of overestimation trend as the pre-
dicted value ln(mean TTI) increases, and that there are more 
negative residuals than positive ones. Overall, this validation 
result is also relatively satisfying. The associated results and 
plots for this category are included in the attachment.

Figure C.21. Residual normality plot of peak 
hour—mean TTI—AllData.

Figure C.20. Residual histogram of peak hour—
mean TTI—AllData.

Table C.15. Residual Analysis of Peak 
Hour—Mean TTI—AllData

Table C.15.a. Basic Statistical Measures

Location Variability

Mean -0.030 Std deviation 0.2262

Median -0.025 Variance 0.0512

Minimum -0.547 Range 0.9459

Maximum 0.3987 Interquartile range 0.3138

Table C.15.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.030 -0.084 0.0227

Std deviation 0.2262 0.1944 0.2707

Variance 0.0512 0.0378 0.0733

Table C.15.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -1.144 Pr > t 0.2565

Table C.15.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9763 Pr < W 0.1916

Figure C.19. Residual plot of peak hour—mean TTI—
AllData.
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peak houR—Mean tti—MinneSota

The validation of the peak hour mean TTI model using the 
MN data set shows that the null hypothesis of the zero resid-
ual mean cannot be rejected with a confidence level of 90%. 
The normality test also shows that the null hypothesis can-
not be rejected with the preset threshold confidence level 
but can be rejected with a confidence level of 85%. The 
residual plot displays a random pattern except for the 
potential increasing trend toward the upper right corner. 
Generally, this model performs satisfactorily. The associated 
results and plots for this category are included in the 
attachment.

Peak Hour—99th-Percentile TTI

peak houR—99th-peRcentile tti—all data

The RMSE values are all close to 50% in the peak hour 99th-
percentile TTI model validation (Table C.16). Because the 
99th-percentile TTI usually represents some extreme or usual 
value in the TTI distribution, it is expected to have a relatively 
large prediction error. The RMSE value in the L03 report  
is 41.3%, smaller than all the RMSE values produced in this 
validation. This may indicate that the validation set presents 
different characteristics than the training data set.

The residual analysis using the AllData set is summarized 
by Table C.17 and Figures C.22 to C.24. The Student’s t-test 
shows no strong confidence to reject the zero residual mean 
hypothesis, while the normality test rejects the null hypoth-
esis of normal distribution with a confidence level of 90%. 
The residual plot presents a problematic pattern; the model 
tends to underestimate the response variable when the pre-
dicted value is small, and it tends to overestimate the response 
variable when the predicted value is large. Such a pattern may 
indicate that the samples located in the bottom left and the 
upper right corners are potential outliers. A closer look into 
the details of the validation data set reveals that the coefficient 
of the D/C predictor is 1.13062, dominating the prediction 
results. Those potential outlier samples are likely to have a 
different relationship between the D/C ratio and the response 
variable when compared to that in the training data samples 
used in L03. The model performs better when the predicted 
ln(99th-percentile TTI) is within (1, 1.5) where the residuals 
are within (-0.5, 0.5), or that the predicted 99th-percentile 
TTI is within (2.72, 4.48).

Table C.16. RMSE of Peak Hour—
99th-Percentile TTI

RMSE All Data CA MN

Mean TTI 50.74% 52.78% 47.46%

Table C.17. Residual Analysis of Peak 
Hour—99th-Percentile TTI—AllData

Table C.17.a. Basic Statistical Measures

Location Variability

Mean -0.057 Std deviation 0.4092

Median -0.080 Variance 0.1675

Minimum -0.911 Range 2.3174

Maximum 1.4057 Interquartile range 0.3618

Table C.17.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.057 -0.153 0.0391

Std deviation 0.4092 0.3516 0.4897

Variance 0.1675 0.1236 0.2398

Table C.17.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -1.183 Pr > t 0.2407

Table C.17.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9464 Pr < W 0.0040

Figure C.22. Residual plot of peak hour— 
99th-percentile TTI—AllData.
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peak houR—99th-peRcentile tti—califoRnia

Validation using the CA data presents similar results to that 
using the AllData set. Again, the model performs best when 
the predicted ln(99th-percentile TTI) is within (1, 1.5). The 
Student’s t-test shows that the zero residual mean hypothesis 
cannot be rejected, while the Shapiro-Wilk normality test 
rejects the null hypothesis of normal distribution with a con-
fidence level of 90%. The histogram and the normality plot 
manifest these tests results. All associated results and plots are 
included in the attachment.

peak houR—99th-peRcentile tti—MinneSota

The residual plot using the MN data set do not presents any 
strong unusual pattern except for the three underestimated 
samples located in the bottom left corner of the plot, which may 
be potential outliers. The Student’s t-test rejects the zero resid-
ual mean with a confidence level of 90%, while the Shapiro-
Wilk test cannot reject the null hypothesis of normal distribution 
with the preset confidence level. All associated results and plots 
are included in the attachment.

Peak Hour—95th-Percentile TTI

peak houR—95th-peRcentile tti—all data

The RMSE values from the validation of the 95th-percentile TTI 
are summarized in Table C.18. The largest value still comes from 
the CA data set, which is 40.19%. The RMSE for the AllData set 
is 38.38%, which is almost equal to the RMSE of 38.3% for the 
peak hour 95th-percentile TTI model in the L03 report.

From this validation it is apparent that neither the zero 
residual mean hypothesis nor the normal distribution 
hypothesis can be rejected with the preset threshold confi-
dence level, indicating satisfaction to these two model 
assumptions (Table C.19). The histogram and the normality 
plot also present good shape (Figures C.26 and C.27). However, 
the plot of residual versus the predicted reveals a problematic 
pattern: the increasing trend of residual as the predicted value 
increases (Figure C.25). It shows that the model tends to under-
estimate ln(95th-percentile TTI) when this predicted value is 
small while overestimate it when this predicted value is large. 
This pattern shows that although the model satisfies the zero 
residual mean and the normal distribution of residual assump-
tions, the model form may still be inadequate and might be 
improved.

peak houR—95th-peRcentile tti—califoRnia

The validation using the CA data set yields a similar pattern 
to that using the AllData set. The research team cannot reject 
the zero residual mean hypothesis or the normal distribution 
hypothesis with the preset threshold confidence, indicating 
these two model assumptions are satisfied. However, the 
residual plot shows a nonrandom increasing pattern, which 
indicates that the model form may not be adequate to predict 
the validation data set. All associated results and plots are 
included in the attachment.

Figure C.23. Residual histogram of peak hour— 
99th-percentile TTI—AllData.`

Figure C.24. Residual normality plot of peak 
hour—99th-percentile TTI—AllData.

Table C.18. RMSE of Peak Hour—
95th-Percentile TTI

RMSE All Data CA MN

Mean TTI 38.38% 40.19% 37.27%
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peak houR—95th-peRcentile tti—MinneSota

The validation results using the MN data set show that the 
research team cannot reject the zero residual mean assump-
tion or the normal distribution of residual assumption with 
a confidence level of 90%, as the p-values in the Student’s 
t-test and the Shapiro-Wilk test are both larger than 0.1. The 
histogram and the normality plot manifest these hypothesis-
testing results. However, the plot of residual versus the pre-
dicted value displays a possible increasing trend, implying 
that the model may be biased. All associated results and plots 
are included in the attachment.

Figure C.27. Residual normality plot of peak 
hour—95th-percentile TTI—AllData.

Figure C.26. Residual histogram of peak hour— 
95th-percentile TTI—AllData.

Table C.19. Residual Analysis of Peak 
Hour—95th-Percentile TTI—AllData

Table C.19.a. Basic Statistical Measures

Location Variability

Mean -0.037 Std deviation 0.3250

Median 0.0129 Variance 0.1056

Minimum -0.757 Range 1.7162

Maximum 0.9590 Interquartile range 0.4056

Table C.19.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.037 -0.113 0.0397

Std deviation 0.3250 0.2792 0.3889

Variance 0.1056 0.0780 0.1512

Table C.19.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.957 Pr > t 0.3419

Table C.19.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9850 Pr < W 0.5515

Figure C.25. Residual plot of peak hour— 
95th-percentile TTI—AllData.
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Peak Hour—80th-Percentile TTI

peak houR—80th-peRcentile tti—all data

The RMSE values for the validation of the 80th-percentile TTI 
model using the AllData, CA, and MN data sets are close to 
one another, at around 35% (Table C.20). The RMSE for the 
corresponding model in the L03 report is 34.1%, which is 
close to the validation RMSE values.

Table C.21 and Figures C.28 to C.30 summarize the vali-
dation results for the 80th-percentile TTI model using the 
AllData set. The Student’s t-test rejects the null hypothesis of 
zero residual mean with a confidence level of 90%, while the 

Shapiro-Wilk normality test yields a p-value of 0.2959, indi-
cating that the null hypothesis of normal distribution cannot 
be rejected with the preset threshold confidence level. The 
plot of residual versus the predicted ln(80th-percentile TTI) 
implies that bias might exist shown as the tendency of under-
estimating the response variable when the predicted value is 
small and overestimating it when the predicted value is large.

peak houR—80th-peRcentile tti—califoRnia

The validation of the 80th-percentile TTI model using the CA 
data set shows that the model does not perform well enough. 
The Student’s t-test and the Shapiro-Wilk normality test 
reject their null hypotheses with a confidence level of 90%, 
implying violation of the zero residual mean assumption and 

Table C.20. RMSE of Peak Hour—
80th-Percentile TTI

RMSE All Data CA MN

Mean TTI 35.13% 36.89% 34.06%

Table C.21. Residual Analysis of Peak 
Hour—80th-Percentile TTI—AllData

Table C.21.a. Basic Statistical Measures

Location Variability

Mean -0.116 Std deviation 0.2798

Median -0.143 Variance 0.0783

Minimum -0.738 Range 1.4482

Maximum 0.7099 Interquartile range 0.3335

Table C.21.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.116 -0.182 -0.050

Std deviation 0.2798 0.2403 0.3347

Variance 0.0783 0.0578 0.1120

Table C.21.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -3.517 Pr > t 0.0008

Table C.21.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9797 Pr < W 0.2959
Figure C.29. Residual histogram of peak hour— 
80th-percentile TTI—AllData.

Figure C.28. Residual plot of peak hour— 
80th-percentile TTI—AllData.
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the normal distribution of residual assumption. The residual 
versus predicted value plot shows that the model tends to  
overestimate when the predicted value is large, and that there 
are more negative residuals than positive ones. All these obser-
vations suggest that the model can be improved. All associated 
results and plots are included in the attachment.

peak houR—80th-peRcentile tti—MinneSota

The statistical analysis results summarized in the attachment 
show that the Student’s t-test rejects the null hypo thesis of 
zero residual mean with a confidence level of 90%, and the 
Shapiro-Wilk normality test rejects the null hypothesis of 
normal distribution with the same confidence level. However, 
the plot of residual versus the predicted value presents no 
strong nonrandom pattern, except for the three potential 
outliers located at the bottom left corner. Because the basic 
model assumptions are violated, the model performance may 
be improved. Note that the failure to pass the statistical tests 
may result from the existence of those potential outliers.

Peak Hour—50th-Percentile TTI

peak houR—50th-peRcentile tti—all data

The RMSE values for the peak hour 50th-percentile TTI model 
validation are summarized in Table C.22. The largest RMSE 
value comes from the CA data set. This is the same as all previ-
ous validation exercises presented in this appendix. The RMSE 
for the corresponding model in L03 is 28.3%, which is close to 
the RMSE for AllData set.

The validation results of the peak hour 50th-percentile TTI 
model using the AllData set are summarized in Table C.23 
and Figures C.31 to C.33. The Student’s t-test yields a p-value 
of 0.0115, showing strong evidence to reject the null hypoth-
esis of zero residual mean. The Shapiro-Wilk test yields a 
p-value of 0.6028, indicating that the null hypothesis of nor-
mal distribution of residuals cannot be rejected. The plot of 
residuals versus predicted values shows that the residual vari-
ance is much larger when the ln(50th-percentile TTI) is 
around 0.4 than it is otherwise. The histogram also shows 
that the mean of the residual distribution is shifted to the left 

Figure C.30. Residual normality plot of peak 
hour—80th-percentile TTI—AllData.

Table C.22. RMSE of Peak Hour—
50th-Percentile TTI

RMSE All Data CA MN

Mean TTI 28.85% 32.41% 24.22%

Table C.23. Residual Analysis of Peak 
Hour—50th-Percentile TTI—AllData

Table C.23.a. Basic Statistical Measures

Location Variability

Mean -0.075 Std deviation 0.2440

Median -0.066 Variance 0.0595

Minimum -0.624 Range 1.0277

Maximum 0.4035 Interquartile range 0.3580

Table C.23.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.075 -0.132 -0.017

Std deviation 0.2440 0.2096 0.2919

Variance 0.0595 0.0439 0.0852

Table C.23.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.596 Pr > t 0.0115

Table C.23.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9859 Pr < W 0.6028
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side of the zero reference line, which corresponds to the 95% 
limits for residual mean shown in Table C.23.

peak houR—50th-peRcentile tti—califoRnia

The validation using the CA data set yields similar results to that 
using the AllData set: the Student’s t-test rejects the null hypo-
thesis of zero residual mean while the Shapiro-Wilk normality 
test cannot reject the null hypothesis of normal distribution. The 
histogram and the normality plot demonstrate these conclu-
sions. The residual plot shows that there are many more nega-
tive residual samples than positive residual samples, and the 
prediction variance is much larger when the predicted ln(50th-
percentile TTI) is around 0.4 than otherwise. The 95% confi-
dence limits of residual mean are both negative, manifesting 

the same fact that there are more negative residuals than posi-
tive ones. All associated results and plots are included in the 
attachment.

peak houR—50th-peRcentile tti—MinneSota

The validation analysis using the MN data set presents satis-
fying results. The Student’s t-test and the Shapiro-Wilk test 
show evidence that we cannot reject the zero residual mean 
hypothesis and the normal distribution hypothesis. The his-
togram and normality plot demonstrate these conclusions. 
The plot of residuals versus predicted values does not display 
any strong unusual pattern, except for two potential outliers 
located in the upper right corner. Given the RMSE of 24.22%, 
which is smaller than the corresponding RMSE value in L03, 
the research team concludes that this model performs satis-
factorily for the MN validation data set. All associated results 
and plots are included in the attachment.

Peak Hour—10th-Percentile TTI

peak houR—10th-peRcentile tti—all data

The RMSE values in the validation of the 10th-percentile TTI 
model are summarized in Table C.24. The largest one comes 

Figure C.33. Residual normality plot of peak 
hour—50th-percentile TTI—AllData.

Figure C.32. Residual histogram of peak hour— 
50th-percentile TTI—AllData.

Figure C.31. Residual plot of peak hour— 
50th-percentile TTI—AllData.

Table C.24. RMSE of Peak Hour—
10th-Percentile TTI

RMSE All Data CA MN

Mean TTI 18.50% 22.24% 12.14%



84

from the CA data set. The RMSE for this model in the L03 
report is 15.2%, which is larger than the MN RMSE but 
smaller than the other two. Judging by the single criteria of 
RMSE this model performs the best for the MN data set and 
performs the poorest for the CA data set.

The validation of the 10th-percentile TTI model using the 
AllData set shows that the zero residual mean hypothesis in the 
Student’s t-test cannot be rejected with a confidence level of 
90%, while the normal distribution of residual hypothesis can 
be rejected at the preset threshold confidence level (Table C.25). 
The plot of residuals versus predicted values (Figure C.34) 
shows that the prediction variance is much larger when the 
predicted ln(10th-percentile TTI) falls within (0.1, 0.15) than 
otherwise. Those seven samples located below the -0.2 refer-
ence line may be outliers that this model cannot predict well, 
and they may represent different relationships between the 
three independent variables and the dependent variable other 
than those represented in the data-rich model. The histogram 

(Figure C.35) shows that the distribution of residuals has a 
long left tail and that there are more positive than negative 
samples. The residual normality plot is shown in Figure C.36.

peak houR—10th-peRcentile tti—califoRnia

The validation using the CA data set shows that the zero 
residual mean hypothesis and the normal distribution 
hypothesis can be rejected with a confidence level of 90% in 
their respective statistical tests. The histogram and the nor-
mality plot demonstrate these conclusions. The plot of resid-
uals versus the predicted ln(10th-percentile TTI) has the same 
nonconstant variance and potential outlier problems as seen 
in the validation using the AllData set. All associated results 
and plots are included in the attachment.

Table C.25. Residual Analysis of Peak 
Hour—10th-Percentile TTI—AllData

Table C.25.a. Basic Statistical Measures

Location Variability

Mean -0.016 Std deviation 0.1702

Median 0.0392 Variance 0.0290

Minimum -0.640 Range 0.8136

Maximum 0.1739 Interquartile range 0.1643

Table C.25.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.016 -0.056 0.0241

Std deviation 0.1702 0.1462 0.2037

Variance 0.0290 0.0214 0.0415

Table C.25.c. Tests for Location: 
Mu0

Test Statistic p-Value

Student’s t t -0.794 Pr > t 0.4297

Table C.25.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7949 Pr < W <0.0001

Figure C.34. Residual plot of peak hour— 
10th-percentile TTI—AllData.

Figure C.35. Residual histogram of peak hour— 
10th-percentile TTI—AllData.
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peak houR—10th-peRcentile tti—MinneSota

The validation using the MN data set shows that the zero resid-
ual mean and the normal distribution of residuals assumptions 
are likely violated as the Student’s t-test and the Shapiro-Wilk 
normality test both reject their null hypotheses. The plot of 
residuals versus predicted values shows that most of the residu-
als are positive, and there is one potential outlier located at the 
bottom right of the figure. The violation of assumptions and 
the unusual patterns shown in the residual plots indicate that 
the peak hour 10th-percentile TTI does not perform satisfacto-
rily using the MN data set. All associated results and plots are 
included in the attachment.

Conclusions of the Data-Rich  
Peak Hour Model Validation

Based on the RMSE values, the data-rich peak hour models 
generally perform the best with the MN data set and the poor-
est with the CA data set. The most satisfying validation results 
were seen in the validation of the 50th-percentile TTI model 
using the MN data set, where both the zero residual mean 
assumption and the normal distribution assumption passed 
their respective statistical tests, and the residual plot did not 
show any unusual patterns.

It is apparent that violations of basic regression assump-
tions were common in these validation results. The models 
may not be able to sufficiently describe the relationship 
between the independent variables and the dependent vari-
ables as there are some nonrandom patterns in the residual 

plots. All of these findings indicate that the models can poten-
tially be improved for better performance.

Midday Models

The midday models depend only on the critical D/C ratio, in 
the form of

y e x= β

Thus, the prediction accuracy relies on the correction of 
the exponential relationship between the D/C ratio and the 
mean TTI.

Midday—Mean TTI

Midday—Mean tti—all data

The RMSE for the training data set is 7.5% in the L03 report 
(Table C.26). In the validation, the largest RMSE comes from 
the CA data set, which is almost the same as the L03 report. The 
smallest is 3.52%, which is almost half of the L03 report. Based 
on the single criteria of RMSE, this data-rich model performs 
satisfactorily for the validation data sets, and even better than 
its performance for the training data set. However, the small 
RMSE value may result from the characteristics of the data sets; 
it does not necessarily indicate satisfying performance.

The validation of the midday mean TTI model using the 
AllData set shows that the Student’s t-test rejects the zero resid-
ual mean hypothesis with a confidence level of 90%, and the  
Shapiro-Wilk normality test also rejects the null hypothesis of 
normal distribution (Table C.27). Thus, it is likely that the zero 
residual mean assumption and the assumption that the residuals 
follow a normal distribution are violated. The distorted shape  
in the normality plot (Figure C.37) and the histogram (Fig-
ure C.38) demonstrate these hypothesis-testing conclusions. 
The plot of residuals versus predicted values (Figure C.39) pre-
sents some problematic patterns: there are more positive residu-
als than negative ones, and there are some potential outliers with 
large absolute residual values. These observations indicate that 
the model may not perform satisfactorily.

Midday—Mean tti—califoRnia

The validation of the midday mean TTI model using the CA 
data set presents similar results to that using the AllData set. 
The null hypothesis of zero residual mean can be rejected in 

Figure C.36. Residual normality plot of peak 
hour—10th-percentile TTI—AllData.

Table C.26. RMSE of Midday—Mean TTI

RMSE All Data CA MN Salt Lake City

Mean TTI 6.24% 7.57% 4.07% 3.52%
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the Student’s t-test with a confidence level of 90%. The null 
hypothesis of normal distribution can also be rejected with 
the threshold confidence level in the normality test. The plot 
of residuals versus predicted values shows that most samples 
have positive residuals, while there are also potential outliers 
with large negative residuals. All associated results and plots 
are included in the attachment.

Midday—Mean tti—MinneSota

The validation of the midday mean TTI model using the MN 
data set also shows similar pattern to that using the AllData 
set. The zero residual mean and the normal distribution of 
residual hypotheses can be rejected in the statistical tests with 

Figure C.39. Residual plot of midday—mean TTI— 
AllData.

Figure C.38. Residual histogram of midday— 
mean TTI—AllData.

Table C.27. Residual Analysis of Midday—
Mean TTI—AllData

Table C.27.a. Basic Statistical Measures

Location Variability

Mean 0.0199 Std deviation 0.0573

Median 0.0349 Variance 0.0033

Minimum -0.443 Range 0.5167

Maximum 0.0741 Interquartile range 0.0329

Table C.27.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0199 0.0126 0.0272

Std deviation 0.0573 0.0526 0.0630

Variance 0.0033 0.0028 0.0040

Table C.27.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 5.3837 Pr > t <0.0001

Table C.27.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5446 Pr < W <0.0001

Figure C.37. Residual normality plot of midday—
mean TTI—AllData.
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a confidence level of 90%. The histogram and the normality 
plot show the deviation of the residual distribution from a 
normal distribution. The residual versus the predicted value 
plot displays that there are more positive residuals than nega-
tive ones and that there is a potential outlier located at the 
bottom right of the figure. This indicates that the model may 
be problematic in predicting the mean TTI for MN data. All 
associated results and plots are included in the attachment.

Midday—Mean tti—Salt lake city

The validation results for the midday mean TTI model using 
the Salt Lake City data are summarized in the attachment. It 
is apparent that the zero residual mean hypothesis can be 
rejected with a confidence level of 90%, and the normal dis-
tribution of residual hypothesis can also be rejected with the 
same threshold confidence level. The histogram and the nor-
mality plot demonstrate that the residual distribution devi-
ates from the normal distribution. The zero reference line in 
the plot of residual versus the predicted value acts like a sepa-
rating line. It separates the residuals into two sets, indicating 
that the model may not perform satisfactorily.

Midday—99th-Percentile TTI

Midday—99th-peRcentile tti—all data

The RMSE values for each validation data set are summarized 
in Table C.28. The corresponding RMSE value in the data-
rich appendix is 33.4%, which is close to the RMSE values for 
the AllData set, the CA data set, and the Salt Lake City data 
set. The RMSE for MN data set is smaller. A closer look at the 
validation details provides further details on the model per-
formance for each validation data set.

The validation of the midday 99th-percentile TTI model 
using the AllData set shows that the zero residual mean 
assumption, the assumption that the residuals follow a nor-
mal distribution and the constant residual variance assump-
tions may be violated (Table C.29). The Student’s t-test rejects 
the null hypothesis of zero residual mean with a confidence 
level of 90%, and the Shapiro-Wilk normality test rejects the 
null hypothesis of normal distribution with the same thresh-
old confidence level. The plot of residual versus the predicted 
value (Figure C.40) shows that the variance of residual tends 

Table C.28. RMSE of Midday— 
99th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 32.32% 34.95% 25.86% 34.01%

Table C.29. Residual Analysis of Midday—
99th-Percentile TTI—AllData

Table C.29.a. Basic Statistical Measures

Location Variability

Mean 0.1946 Std deviation 0.2019

Median 0.2451 Variance 0.0407

Minimum -0.535 Range 1.2456

Maximum 0.7110 Interquartile range 0.1892

Table C.29.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1946 0.1689 0.2202

Std deviation 0.2019 0.1853 0.2217

Variance 0.0407 0.0343 0.0491

Table C.29.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 14.962 Pr > t <0.0001

Table C.29.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8792 Pr < W <0.0001

Figure C.40. Residual plot of midday— 
99th-percentile TTI—AllData.
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to increase with the increase in predicted values. All these 
observations imply that the predictive capability of the model 
may be insufficient. The residual histogram and normality 
plot are shown in Figure C.41 and Figure C.42.

Midday—99th-peRcentile tti—califoRnia

Since the CA data set constitutes the largest portion of the 
AllData set, the validation of the midday 99th-percentile TTI 
model using the CA data set shows similar results to that using 
the AllData set. The zero residual mean hypothesis test and 
the normality hypothesis test both reject the null hypo theses, 

respectively, with a confidence level of 90%. The residual ver-
sus the predicted value plot shows that a nonconstant resid-
ual variance problem may exist. All associated results and 
plots are included in the attachment.

Midday—99th-peRcentile tti—MinneSota

In this validation the zero residual mean hypothesis and the 
normal distribution of residual hypothesis again fail to pass 
the statistical tests, respectively. The histogram and the nor-
mality plot demonstrate these conclusions. The plot of resid-
uals versus the predicted values shows two unusual patterns: 
more positive residuals and the potential outliers when the 
predicted value is around 0.45. Thus, the model may not per-
form satisfactorily. All associated results and plots are 
included in the attachment.

Midday—99th-peRcentile tti—Salt lake city

The Salt Lake City data validation of the midday 99th-percentile 
TTI model shows that the zero residual mean hypothesis and 
the normal distribution of residual hypothesis can be rejected 
again with a confidence level of 90% in the respective statisti-
cal tests. The plot of residuals versus the predicted values show 
that the model constantly overestimates ln(99th-percentile 
TTI), excluding one sample with a large negative residual 
located at the bottom of the figure.

Midday—95th-Percentile TTI

Midday—95th-peRcentile tti—all data

The RMSE for this midday 95th-percentile TTI model for the 
training data set in the L03 report is 21.8%. The research 
team can see that the RMSE values for all the validation data 
sets are smaller than 21.8% (Table C.30). This could be a 
result of the varying characteristics of the data sets instead of 
improved performance. The research team needs to investi-
gate the validation details to see if the model satisfies the basic 
regression model assumptions.

The validation results for the midday 95th-percentile TTI 
model using the AllData set shows that the zero residual 
mean hypothesis can be rejected with a confidence level of 
90% in the Student’s t-test, and that the normal distribution 
hypothesis can be rejected with the same threshold confi-
dence level in the normality test (Table C.31). The histogram 
(Figure C.44) and the normality plot (Figure C.45) demon-
strate the deviation of the residual distribution from a 

Figure C.41. Residual histogram of midday— 
99th-percentile TTI—AllData.

Figure C.42. Residual normality plot of midday— 
99th-percentile TTI—AllData.

Table C.30. RMSE of Midday— 
95th-Percentile TTI

RMSE All Data CA MN
Salt Lake  

City

Mean TTI 15.62% 17.29% 14.01% 12.55%
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normal distribution. The plot of residual versus the predicted 
value (Figure C.44) presents an overestimation problem and 
the nonconstant residual variance problem. Generally this 
model does not perform satisfactorily. The plot of residual 
versus the predicted value is shown in Figure C.43.

Midday—95th-Percentile tti—california

Validation of the CA data set presents similar results as that 
of the validation using the AllData set. The zero residual 
mean assumption and the normal distribution assumption 
are likely to be violated since they fail to pass the Student’s 

Table C.31. Residual Analysis of Midday—
95th-Percentile TTI—AllData

Table C.31.a. Basic Statistical Measures

Location Variability

Mean 0.0752 Std deviation 0.1244

Median 0.1084 Variance 0.0155

Minimum -0.662 Range 0.9157

Maximum 0.2537 Interquartile range 0.0821

Table C.31.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0752 0.0594 0.0910

Std deviation 0.1244 0.1142 0.1366

Variance 0.0155 0.0130 0.0187

Table C.31.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 9.3841 Pr > t <0.0001

Table C.31.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6845 Pr < W <0.0001

Figure C.43. Residual plot of midday—95th-percentile 
TTI—AllData.

Figure C.44. Residual histogram of midday— 
95th-percentile TTI—AllData.

Figure C.45. Residual normality plot of midday— 
95th-percentile TTI—AllData.
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t-test and the normality test. The residual plot shows that the 
model tends to overestimate the response variable. There are 
also some potential outliers located on the bottom side to the 
zero reference line when the ln(95th percentile TTI) is around 
0.2. All associated results and plots are included in the 
attachment.

Midday—95th-peRcentile tti—MinneSota

The validation of the MN data set presents similar problems 
as that of the validation using the CA data set. The zero resid-
ual mean assumption and the normal distribution assump-
tion are likely to be violated as the Student’s t-test and the 
Shapiro-Wilk normality test reject the null hypotheses with a 
confidence level of 90%. The plot of residuals versus the pre-
dicted values shows that the model tends to overestimate the 
response variable while some potential outliers with large 
negative residuals exist when the ln(95th-percentile TTI) is 
around 0.18. All associated results and plots are included in 
the attachment.

Midday—95th-peRcentile tti—Salt lake city

The validation of the midday 95th-percentile TTI model 
using the Salt Lake City data set shows that the zero residual 
mean assumption and the normal distribution assumption 
are unlikely to be satisfied. The plot of residuals versus the 
predicted values shows that the model consistently over-
estimates the ln(95th-percentile TTI) except for one potential 
outlier with large negative residual located at the bottom of 
the figure, where ln(95th-percentile TTI) is around 0.14. All 
associated results and plots are included in the attachment.

Midday—80th-Percentile TTI

Midday—80th-peRcentile tti—all data

The largest RMSE in the validation of the midday 80th- 
percentile TTI model comes from the CA data set at 10.86% 
(Table C.32). The smallest comes from the Salt Lake City 
data set, which is 3.6%. The RMSE for this model in the L03 
report is 9.2%, which is smaller than the RMSE of the CA 
data set but larger than the RMSE values for the other three 
data sets. Based on the single criteria of RMSE, the research 
team may reach the conclusion that the model performs sat-
isfactorily for the validation data sets. However, as discussed 
previously, the RMSE might easily lead to misleading con-
clusions and further investigation of the validation details is 

required to evaluate whether the model assumptions are 
satisfied.

The validation results show that the Student’s t-test rejects 
the null hypothesis of zero residual mean with a confidence 
level of 90%, and the Shapiro-Wilk normality test rejects the 
null hypothesis with the same threshold confidence level 
(Table C.33). The plot of residuals versus the predicted values 
(Figure C.46) manifests a problematic pattern in that the 
model tends to overestimate the response variable, resulting 
in more positive residuals. Additionally, potential outliers 
characterized by large negative residuals can be noted from 
the plot. The residual histogram and normality plots are 
shown in Figures C.47 and C.48.

Midday—80th-peRcentile tti—califoRnia

In this validation the Student’s t-test cannot reject the null 
hypothesis of zero residual mean with a confidence level of 
90%, while the Shapiro-Wilk normality test rejects the null 
hypothesis of normal distribution with the threshold confi-
dence level of 90%. The residual plot for the CA data set 

Table C.32. RMSE of Midday— 
80th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 8.99% 10.86% 6.61% 3.60%

Table C.33. Residual Analysis of Midday—
80th-Percentile TTI—AllData

Table C.33.a. Basic Statistical Measures

Location Variability

Mean 0.0116 Std deviation 0.0854

Median 0.0360 Variance 0.0073

Minimum -0.627 Range 0.7005

Maximum 0.0737 Interquartile range 0.0462

Table C.33.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0116 0.0008 0.0224

Std deviation 0.0854 0.0784 0.0938

Variance 0.0073 0.0062 0.0088

Table C.33.c. Tests for Location: Mu0

Test Statistic p-Value

Student’s t t 2.1077 Pr > t 0.0361

Table C.33.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5139 Pr < W <0.0001
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shows similar problems noted in the validation results of the 
AllData set (i.e., more positive residuals and potential out-
liers). All associated results and plots are included in the 
attachment.

Midday—80th-peRcentile tti—MinneSota

The validation of the midday 80th-percentile TTI model 
using the MN data set shows that the zero residual mean 
assumption and the normal distribution assumption are 
likely to be violated, as they fail to pass the respective statis-
tical tests. The residuals versus the predicted values plot 
shows that the model tends to overestimate the response 
variable as there are more positive residuals than negative 
ones. There are also two potential outliers with large nega-
tive residuals. All associated results and plots are included in 
the attachment.

Midday—80th-peRcentile tti—Salt lake city

In this validation the null hypothesis of zero residual mean is 
rejected by the Student’s t-test, and the null hypothesis of 
normal distribution of residual is also rejected in the normal-
ity test with a confidence level of 90%. The plot of residuals 
versus the predicted values has an unusual pattern where the 
upper bound of residuals has a linearly increasing pattern. 
Such nonrandomness indicates that the model may not be 
able to adequately describe the relationship between the inde-
pendent variables and the dependent variable. All associated 
results and plots are included in the attachment.

Midday—50th-Percentile TTI

Midday—50th-peRcentile tti—all data

The RMSE for the midday 50th-percentile TTI model is 
21.8% in the L03 report. This number is suspicious since it is 
larger than the RMSE for the midday 80th-percentile TTI 
model (9.2%) and equals to the RMSE for the midday 95th-
percentile TTI model (21.8%). Since the pth-percentile TTI 
value generally decreases as the percentage p decreases, the 
large RMSE value for midday 50th-percentile TTI is un- 
expected. The RMSE values for the same model using the 
validation data sets are all smaller than 7% (Table C.34). If the 

Figure C.46. Residual plot of midday—80th-percentile 
TTI—AllData.

Figure C.47. Residual histogram of midday— 
80th-percentile TTI—AllData.

Figure C.48. Residual normality plot of  
midday—80th-percentile TTI—AllData.

Table C.34. RMSE of Midday— 
50th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 5.43% 6.93% 2.09% 2.08%
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training data set used in L03 is similar to the validation data 
sets, then the RMSE value in the L03 report should not have 
been this large, which indicates that it could be erroneous. 
For the validation data sets the research team can see that the 
largest value still comes from the CA data set while the small-
est ones come from the MN and the Salt Lake City sets. It 
should be noted again that such small RMSE values might 
not necessarily indicate good model performance.

In this validation the zero residual mean hypothesis cannot 
be rejected with a confidence level of 90%, while the normal 
distribution hypothesis can be rejected with the same thresh-
old confidence level (Table C.35). The histogram (Fig-
ure C.50) and the normality plot (Figure C.51) demonstrate 
the fact that the residual distribution does not closely follow 
a normal distribution. Note that the zero residual mean 
hypothesis passing the Student’s t-test successfully could be 
because of the existence of potential outliers with large nega-
tive residuals, which can be identified in the plot of residuals 
versus the predicted values (Figure C.49) and the histogram. 

Table C.35. Residual Analysis of Midday—
50th-Percentile TTI—AllData

Table C.35.a. Basic Statistical Measures

Location Variability

Mean 0.0023 Std deviation 0.0529

Median 0.0184 Variance 0.0028

Minimum -0.471 Range 0.5043

Maximum 0.0333 Interquartile range 0.0226

Table C.35.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0023 -0.004 0.0090

Std deviation 0.0529 0.0486 0.0581

Variance 0.0028 0.0024 0.0034

Table C.35.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 0.6760 Pr > t 0.4997

Table C.35.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4486 Pr < W <0.0001

Figure C.49. Residual plot of midday—50th-percentile 
TTI—AllData.

Figure C.50. Residual histogram of midday— 
50th-percentile TTI—AllData.

From the plot of residuals versus the predicted values it is also 
evident that the upper bound of residuals increases linearly, 
which should not be the case if the regression model was 
behaving as expected.

Midday—50th-peRcentile tti—califoRnia

The validation of the midday 50th-percentile TTI model 
using the CA data set presents similar results to that using the 
AllData set. The null hypothesis of normal distribution fails 
to pass the Shapiro-Wilk test with a 90% confidence level, 
while the null hypothesis of zero residual mean cannot be 
rejected as the Student’s t-test yields a p-value larger than 0.1. 
The residual plots again present the previously identified 
problems: nonrandom residual pattern and potential outliers. 
The above discussion indicates that the model may not 
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perform satisfactorily. All associated results and plots are 
included in the attachment.

Midday—50th-peRcentile tti—MinneSota

In this validation the Student’s t-test and the Shapiro-Wilk test 
both reject their null hypothesis with a confidence level of 90%, 
indicating that the zero residual mean assumption and the  
normal distribution of residuals assumption are likely to be vio-
lated. The plot of residuals versus the predicted values presents 
a nonrandom pattern of residuals, with the residuals increasing 
almost linearly on the upper bound. A well-behaving regression 
model should produce residuals randomly distributed along 
the zero reference line without any patterns. All associated 
results and plots are included in the attachment.

Midday—50th-peRcentile tti—Salt lake city

The Salt Lake City validation results show that the zero resid-
ual mean hypothesis and the normal distribution hypothesis 
can be rejected with a confidence level of 90%. The residuals 
versus the predicted values plot indicates some nonrandom 
patterns on the upper bound of residuals. Hence, although 
the RMSE value for this data set is only 2.08%, the model does 
not perform satisfactorily. All associated results and plots are 
included in the attachment.

Midday—10th-Percentile TTI

Midday—10th-peRcentile tti—all data

The RMSE value of the midday 10th-percentile TTI is 5.1% 
for the training data set in the L03 report. This is larger than 

all RMSE values for the validation data sets. The largest vali-
dation RMSE still comes from the CA data set, while the 
smallest comes from the MN data set (Table C.36).

In this validation the Student’s t-test rejects the null 
hypothesis of zero residual mean with a confidence level of 
90%, and the normality test also rejects the null hypothesis of 
normal distribution (Table C.37). The residual plots (Fig-
ure C.52) also reveal some problematic patterns. The histo-
gram (Figure C.53) and the normality plot (Figure C.54) 
demonstrate the hypothesis-testing results, while the plot of 
residuals versus the predicted values shows an increasing 
upper bound of residuals as well as large negative residuals, 
indicating inadequacy of the model.

Figure C.51. Residual normality plot of midday— 
50th-percentile TTI—AllData.

Table C.36. RMSE of Midday— 
10th-Percentile TTI

RMSE All Data CA MN Salt Lake City

Mean TTI 1.81% 2.20% 0.80% 1.33%

Table C.37. Residual Analysis of Midday—
10th-Percentile TTI—AllData

Table C.37.a. Basic Statistical Measures

Location Variability

Mean 0.0021 Std deviation 0.0178

Median 0.0071 Variance 0.0003

Minimum -0.138 Range 0.1547

Maximum 0.0168 Interquartile range 0.0038

Table C.37.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0021 -17E-5 0.0044

Std deviation 0.0178 0.0164 0.0196

Variance 0.0003 0.0003 0.0004

Table C.37.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 1.8177 Pr > t 0.0704

Table C.37.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4378 Pr < W <0.0001
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Midday—10th-peRcentile tti—califoRnia

The validation of the midday 10th-percentile TTI model 
using the CA data set presents similar results to that using 
the AllData set, except that zero residual mean hypothesis 
has passed the Student’s t-test. However, this success of 
passing the hypothesis test could be attributed to the exis-
tence of large negative residuals, which can be seen from the 
residuals versus the predicted values plot. The normality 
test again rejects its null hypothesis. The upper bound of 
residuals in the plot of residuals versus the predicted values 
also presents a linearly increasing trend. These observations 
suggest that the model does not perform the prediction sat-
isfactorily. All associated results and plots are included in 
the attachment.

Midday—10th-peRcentile tti—MinneSota

In this validation neither the null hypothesis of zero residual 
mean nor the null hypothesis of normal distribution pass their 
respective statistical tests, indicating the violation of basic 
regression model assumptions. The plot of residual versus the 
predicted value shows an unusual pattern. Most of the residu-
als form an increasing linear shape above the zero reference 
line. However, the vertical axis value tells that these residuals 
are all approximately equal to 0.01, which is also revealed from 
the almost zero residual variance in the table included in the 
attachment. A well-performing model should have randomly 
distributed residuals rather than what is seen here.

Midday—10th-peRcentile tti—Salt lake city

In this validation the Student’s t-test yields a p-value of 0.5199, 
indicating that the null hypothesis of zero residual mean with a 
confidence level of 90% cannot be rejected. The Shapiro-Wilk 
normality test rejects the null hypothesis of normal distribu-
tion. The plot of residual versus the predicted value presents a 
nonrandom pattern above the zero reference line, and there are 
some points below the zero reference line with relatively large 
negative residuals that may be potential outliers. All associated 
results and plots are included in the attachment.

Conclusions of the Data-Rich Midday  
Model Validation

The validation of the midday models does not present satisfying 
results. Violations of the basic regression model assumptions 
are consistently seen in the validation results. However, the most 

Figure C.53. Residual histogram of midday— 
10th-percentile TTI—AllData.

Figure C.52. Residual plot of midday—10th-percentile 
TTI—AllData.

Figure C.54. Residual normality plot of midday— 
10th-percentile TTI—AllData.
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problematic issue is the nonrandom patterns shown in the 
residual plots, which indicate that the model is not adequate.

It may be mentioned again that the comparison of the L03 
RMSE values and the current RMSE values is based on the 
assumption that they are defined in the same way. However, 
because of the limited knowledge on how the L03 models 
were built, the comparison of the current validation results 
with the L03 results cannot be ascertained completely. In 
addition, the RMSE of 21.8% for the midday 50th-percentile 
TTI provided in the L03 report seems to be erroneous.

Weekday Models

The weekly models either have two independent variables 
(the average D/C ratio and the ILHL), or only one (the aver-
age D/C ratio), so the weather condition does not influence 
the prediction of the weekday travel time reliability metrics 
in the data-rich weekday models. The data-rich weekday 
50th-percentile TTI model and the data-rich weekday 10th- 
percentile TTI model determine the response value using the 
average D/C ratio alone.

Weekday—Mean TTI

Weekday—Mean tti—all data

The RMSE value for the data-rich weekday mean TTI model is 
29.3% in the L03 report, which is only smaller than RMSE for 
the MN validation data set, as illustrated in Table C.38. The 
RMSE for the AllData set is 19.74, which is about 10% less. The 
smallest is from the Salt Lake City data set, which is only 5.95%. 
Since the RMSE alone cannot lead to confident conclusions, 
further investigation on the validation details is required.

The validation of the weekday mean TTI model using the 
AllData set shows that the zero residual mean hypothesis can 
be rejected with a 90% confidence level in the Student’s t-test 
(Table C.39). The null hypothesis of normal distribution can 
be rejected with the same threshold confidence level in the 
Shapiro-Wilk normality test. The histogram (Figure C.56) and 
the normality plot (Figure C.57) also illustrate that the residual 
distribution is distorted and deviates from a normal distribu-
tion. The plot of residuals versus the predicted values (Fig-
ure C.55) shows a strong pattern, with the residual value 
increasing with the predicted value. Also, the model tends to 
overestimate the response.

Table C.38. RMSE of Weekday—Mean TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 19.74% 12.81% 35.99% 5.95%

Table C.39. Residual Analysis of  
Weekday—Mean TTI—AllData

Table C.39.a. Basic Statistical Measures

Location Variability

Mean 0.1212 Std deviation 0.1336

Median 0.1072 Variance 0.0178

Minimum -0.234 Range 1.3799

Maximum 1.1458 Interquartile range 0.0887

Table C.39.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1212 0.1043 0.1381

Std deviation 0.1336 0.1226 0.1466

Variance 0.0178 0.0150 0.0215

Table C.39.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 14.150 Pr > t <0.0001

Table C.39.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6754 Pr < W <0.0001

Figure C.55. Residual plot of weekday—mean TTI—
AllData.



96

Weekday—Mean tti—califoRnia

In the validation of the weekday mean TTI model using the 
CA data set, the null hypothesis of zero residual mean can 
be rejected with a confidence level of 90%, and the null 
hypothesis of normal distribution can be rejected with the 
same threshold confidence level. The plot of residuals ver-
sus the predicted values shows problematic patterns, with 
the residuals increasing as the predicted values increase and 
that the model tending to overestimate the response vari-
able. All associated results and plots are included in the 
attachment.

Weekday—Mean tti—MinneSota

In this validation both the Student’s t-test and the Shapiro-
Wilk normality test reject the null hypotheses. The most sig-
nificant problem is the nonrandom pattern shown in the 
residual versus the predicted value plot. The model is evi-
dently biased toward the positive side, as all except one of the 
residual samples are above the zero reference line. The residu-
als also increase with the predicted value, which should not 
happen if the model is well behaving. All associated results 
and plots are included in the attachment.

Weekday—Mean tti—Salt lake city

This validation shows that the model does not perform satis-
factorily. The zero mean hypothesis and the normality 
hy pothesis are rejected in the statistical tests, but the most 
important unusual pattern is the nonrandomness shown in 
the plot of residuals versus the predicted values. The increas-
ing trend and the overestimation tendency can be observed, 
which indicates that the model form may not be adequate. All 
associated results and plots are included in the attachment.

Weekday—99th-Percentile TTI

Weekday—99th-peRcentile tti—all data

The RMSE value is 38.9% in the L03 report for the data-
rich weekday 99th-percentile model. The RMSE for the  
AllData set is nearly twice as high, at 72.91%. The RMSE for 
the MN data set is the largest at 141.72%, which is highly 
influenced by the extreme values in the prediction. More 
details can be found in the validation analysis of the MN 
data set (Table C.40).

Validating the weekday 99th-percentile TTI model using 
the AllData set shows that the model has the follow prob-
lematic issues (Table C.41). The zero residual mean Stu-
dent’s t-test yields a p-value less than 0.001, showing strong 
evidence that the null hypothesis can be rejected. The 95% 
confidence interval for the residual mean is [0.2732, 
0.3842], implying that the model is biased toward the posi-
tive side. The normality test also rejects the null hypothesis. 
The plot of residuals versus the predicted values (Fig-
ure C.58) shows an overestimation tendency caused by 
more positive residual samples and an increasing trend. 
The residual histogram and normality plots are shown in 
Figures C.59 and C.60.

Figure C.56. Residual histogram of weekday—mean 
TTI—AllData.

Figure C.57. Residual normality plot of  
weekday—mean TTI—AllData.

Table C.40. RMSE of Weekday— 
99th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 72.91% 50.04% 141.72% 30.87%
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Weekday—99th-peRcentile tti—califoRnia

In this validation both the 95% confidence limits for the zero 
residual mean are positive, which accords with the Student’s 
t-test results. The normality test also rejects the null hypoth-
esis with a confidence level of 90%. The residual versus the 
predicted value plot manifests the overestimation tendency 
and the potential outliers. It should also be noted that the 
variance of residuals is relatively large, compared to the scale 
of the predicted value. These problems may render the model 
not reliable to predict unseen samples. All associated results 
and plots are included in the attachment.

Figure C.59. Residual histogram of midday— 
99th-percentile TTI—AllData.

Figure C.60. Residual normality plot of midday— 
99th-percentile TTI—AllData.

Table C.41. Residual Analysis of 
Weekday—99th-Percentile TTI—AllData

Table C.41.a. Basic Statistical Measures

Location Variability

Mean 0.3287 Std deviation 0.4389

Median 0.2902 Variance 0.1926

Minimum -0.480 Range 4.0280

Maximum 3.5480 Interquartile range 0.3872

Table C.41.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.3287 0.2732 0.3842

Std deviation 0.4389 0.4030 0.4818

Variance 0.1926 0.1624 0.2322

Table C.41.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 11.674 Pr > t <0.0001

Table C.41.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7270 Pr < W <0.0001

Figure C.58. Residual plot of midday—99th-percentile 
TTI—AllData.
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Weekday—99th-peRcentile tti—MinneSota

In this validation the zero residual mean assumption and the 
normal distribution assumption seem to be violated as the 
Student’s t-test and the Shapiro-Wilk normality test reject 
their null hypotheses. The residual versus the predicted value 
plot renders unusual patterns, with the residuals increasing 
with the predicted values. There are also more positive resid-
uals than negative ones. All associated results and plots are 
included in the attachment.

Weekday—99th-peRcentile tti—Salt lake city

In this validation the Student’s t-test and the normality test 
show strong evidence to reject the null hypotheses. The plot of 
residuals versus the predicted values generally shows a random 
pattern, except for there being more samples located in the 
upper left corner than anywhere else. In addition, the model still 
tends to yield more positive residuals than negative ones. All 
associated results and plots are included in the attachment.

Weekday—95th-Percentile TTI

Weekday—95th-peRcentile tti—all data

The RMSE for the data-rich weekday 95th-percentile TTI is 
31.8% for the L03 report, which is only larger than the RMSE 
value for the Salt Lake City data set. The MN RMSE is again 
influenced by the extreme values in the data set. The AllData 
RMSE is 83.32%, which is also influenced by the extreme values 
(Table C.42).

The validation results show that null hypothesis of zero 
residual mean can be rejected with a confidence level of 90%, 
as the p-value is less than 0.0001, and the null hypothesis of 
normal distribution can also be rejected with the same 
threshold confidence level (Table C.43). The plot of residuals 
versus the predicted values (Figure C.61) shows similar prob-
lems to those seen in the validation of the 99th-percentile TTI 
model. The increasing trend and the unbalanced pattern 
indicate that the model may be biased and that there may be 
an influential variable that is not included in the model. Note 
that the variance of residuals is relatively large given the scale 
of the predicted value. The residual histogram and normality 
plots are shown in Figures C.62 and C.63.

Weekday—95th-peRcentile tti—califoRnia

In this validation the null hypotheses in the Student’s t-test 
and the Shapiro-Wilk normality test are rejected. The plot of 

Table C.42. RMSE of Weekday— 
95th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 83.82% 40.46% 197.82% 22.85%

Table C.43. Residual Analysis of 
Weekday—95th-Percentile TTI—AllData

Table C.43.a. Basic Statistical Measures

Location Variability

Mean 0.3416 Std deviation 0.5050

Median 0.2780 Variance 0.2550

Minimum -0.406 Range 4.7819

Maximum 4.3758 Interquartile range 0.2729

Table C.43.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.3416 0.2778 0.4054

Std deviation 0.5050 0.4637 0.5544

Variance 0.2550 0.2150 0.3073

Table C.43.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 10.545 Pr > t <0.0001

Table C.43.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6022 Pr < W <0.0001

Figure C.61. Residual plot of midday—95th-percentile 
TTI—AllData.
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residuals versus the predicted values shows that the variation 
of residuals is relatively large given the scale of the predicted 
value. The increasing tendency and the fact that there are 
more positive residuals than negative ones indicate that the 
model may be biased and unreliable. All associated results 
and plots are included in the attachment.

Weekday—95th-peRcentile tti—MinneSota

The validation analysis of this data set is highly influenced 
by the potential outliers. The associated extremely large 
residuals make the RMSE value unusually large. The mean 
of residuals is also biased toward these extreme values. The 

statistical tests yield nearly zero p-values indicating strong 
evidence that the null hypotheses can be rejected with a 
confidence level of 90%. The plot of residuals versus the 
predicted values indicates potential outliers as well as other 
unusual patterns. There are more positive residuals than 
negative ones, and the residuals do not render a random 
pattern but rather an increasing trend. These unusual pat-
terns demonstrate that the model may not be reliable for 
predicting unseen samples. All associated results and plots 
are included in the attachment.

Weekday—95th-peRcentile tti—Salt lake city

In this validation the Student’s t-test rejects the zero residual 
mean hypothesis with a confidence level of 90%, and the nor-
mality test rejects the normal distribution hypothesis with 
the same threshold confidence level. The residual versus the 
predicted value plot display a generally random pattern 
except that there is a cluster of residuals located in the upper 
left of the plot that plays an influential role in the overall posi-
tive residual mean. All associated results and plots are 
included in the attachment.

Weekday—80th-Percentile TTI

Weekday—80th-peRcentile tti—all data

The RMSE value for the data-rich weekday 80th-percentile 
TTI model is 14.7% in the L03 report, which is almost  
the same as the RMSE for the CA validation data set. The 
RMSE for the Salt Lake City data set is much smaller, which 
may due to the small scale and variance of the validation data. 
The RMSE for the MN data set is the largest because of the 
extreme values (Table C.44).

In the validation of the 80th-percentile TTI using the  
AllData set, the Student’ t-test yields a p-value less than 0.0001, 
indicating that the null hypothesis of zero residual mean 
can be rejected (Table C.45). The normality test also indi-
cates strong evidence to reject the null hypothesis of nor-
mal distribution. The plot of residuals versus the predicted 
values (Figure C.64) is still problematic as most of the resid-
ual samples are above the zero reference line, and the increas-
ing trend is obvious. Given these observations, the model 
does not perform satisfactorily for predicting the AllData set. 
The residual histogram and normality plots are shown in 
Figures C.65 and C.66.

Figure C.62. Residual histogram of midday— 
95th-percentile TTI—AllData.

Figure C.63. Residual normality plot of midday— 
95th-percentile TTI—AllData.

Table C.44. RMSE of Weekday— 
80th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 29.28% 14.84% 59.43% 5.75%
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Weekday—80th-peRcentile tti—califoRnia

In this validation the Student’s t-test and the normality test 
reject their null hypotheses, indicating violation of the zero 
residual mean assumption and the normal distribution assump-
tion. The plot of residuals versus predicted values reveals a non-
constant residual variance problem; additionally, the residuals 
are unbalanced with more positive residuals than negative. All 
associated results and plots are included in the attachment.

Weekday—80th-peRcentile tti—MinneSota

The MN validation problems are similar to those of the vali-
dation of the AllData set. The zero residual mean hypothesis 

Figure C.65. Residual histogram of midday— 
80th-percentile TTI—AllData.

Table C.45. Residual Analysis of 
Weekday—80th-Percentile TTI—AllData

Table C.45.a. Basic Statistical Measures

Location Variability

Mean 0.1186 Std deviation 0.2282

Median 0.0958 Variance 0.0521

Minimum -0.387 Range 2.2166

Maximum 1.8296 Interquartile range 0.1441

Table C.45.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1186 0.0897 0.1474

Std deviation 0.2282 0.2096 0.2506

Variance 0.0521 0.0439 0.0628

Table C.45.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 8.0997 Pr > t <0.0001

Table C.45.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6720 Pr < W <0.0001

Figure C.64. Residual plot of midday—80th-percentile 
TTI—AllData.

Figure C.66. Residual normality plot of midday— 
80th-percentile TTI—AllData.



101   

and the normal distribution null hypotheses are rejected. The 
plot of residuals versus the predicted values shows an obvious 
increasing trend with mostly positive residuals. The range of 
the residuals is relatively large compared with the range of the 
predicted values. These observations indicate that the model 
does not perform satisfactorily. All associated results and 
plots are included in the attachment.

Weekday—80th-peRcentile tti—Salt lake city

In this validation the predicted value is within a small range, 
from around 0.04 to around 0.16, which should be kept in 
mind when evaluating the small RMSE and the small residual 
values. The Student’s t-test rejects the null hypothesis of zero 
residual mean with a confidence level of 90%, and the nor-
mality test rejects the null hypothesis of normal distribution 
with the same threshold level of confidence. The residual plot 
shows an increasing trend of residuals. Generally the model 
does not perform satisfactorily enough. All associated results 
and plots are included in the attachment.

Weekday—50th-Percentile TTI

Weekday—50th-peRcentile tti—all data

The data-rich weekday 50th-percentile TTI model does not 
include the ILHL as an independent variable, thus the extreme 
values in the ILHL data in MN does not influence the predic-
tion of the weekday 50th-percentile TTI. The MN RMSE 
value is the smallest, at only 1.71%. The largest RMSE value 
comes from the CA data set, which is 5.92% (Table C.46). The 
RMSE in the L03 report for the same model is 4.7%.

The residual plot indicates the presence of potential outli-
ers with relatively large residuals below the zero reference 
line, showing a potential problem with increasing residual 
variance (Table C.47). Also, the residuals above the zero refer-
ence line exhibit a slightly increasing linear trend. Given a 
maximum predicted value of 0.03, the variance of the residu-
als below the zero reference line seems unusual. There is 
strong evidence shown in the Student’s t-test that the zero 
residual mean hypothesis cannot be rejected as the p-value is 
0.8746. The research team noted that the residual mean is 
negatively close to zero, but the histogram (Figure C.68) and 
the plot of residuals versus the predicted values (Figure C.67) 
indicate that there are more positive residual samples than 
negative ones, which implies that the large negative residuals 
may have influenced the Student’s t-test results. The normality 

Table C.46. RMSE of Weekday— 
50th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 4.68% 5.92% 1.71% 2.16%

Table C.47. Residual Analysis of 
Weekday—50th-Percentile TTI—AllData

Table C.47.a. Basic Statistical Measures

Location Variability

Mean -46E-5 Std deviation 0.0458

Median 0.0146 Variance 0.0021

Minimum -0.399 Range 0.4271

Maximum 0.0282 Interquartile range 0.0197

Table C.47.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -46E-5 -0.006 0.0053

Std deviation 0.0458 0.0421 0.0503

Variance 0.0021 0.0018 0.0025

Table C.47.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.158 Pr > t 0.8746

Table C.47.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4735 Pr < W <0.0001

Figure C.67. Residual plot of midday—50th-percentile 
TTI—AllData.
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test rejects the normal distribution assumption. The residual 
normality plot is shown in Figure C.69.

Weekday—50th-peRcentile tti—califoRnia

This validation presents similar results to the validation of 
the same model using the AllData set. The Student’s t-test 
yields a p-value large enough that the null hypothesis cannot 
be rejected with a confidence level of 90%. The normality test 
indicates that the null hypothesis of normal distribution can 
be rejected with the threshold confidence level. The plot of 
residuals versus the predicted values has some potential 

outliers below the zero reference line. All associated results 
and plots are included in the attachment.

Weekday—50th-peRcentile tti—MinneSota

In this validation the null hypothesis of zero residual mean 
and the null hypothesis of normal distribution are rejected by 
the statistical tests. The plot of residuals versus the predicted 
values shows that there are more positive residuals than nega-
tive ones and that the upper bound of residuals shows a lin-
early increasing trend. The residual scale is much smaller 
than that for the CA data set. All associated results and plots 
are included in the attachment.

Weekday—50th-peRcentile tti—Salt lake city

In this validation the standard deviation of the residual is 
0.0215. Although seeming small, it is as large as the scale of 
the predicted values. The Student’s t-test cannot reject the 
null hypothesis of zero residual mean, as the p-value is larger 
than 10%. The normality test rejects the null hypothesis of 
normal distribution, as the p-value is less than 0.001. The plot 
of residuals versus the predicted values does not show satisfy-
ing results as the upper bound of residuals follows a linear 
trend. The residual range is large compared with the range of 
the predicted value, affirming that the corresponding stan-
dard deviation is relatively large. All associated results and 
plots are included in the attachment.

Weekday—10th-Percentile TTI

Weekday—10th-peRcentile tti—all data

The RMSE value for the data-rich weekday 10th-percentile 
TTI model is 2.0% in the L03 report. The largest RMSE comes 
from the Salt Lake City data set. However, all the RMSE values 
in the validation investigation are smaller than the RMSE in 
the L03 report (Table C.48).

In this validation the residual plots reveal several concerns 
(Table C.49). The histogram and the normality test results 
indicate violation of the normal distribution assumption. 
The plot of residuals versus the predicted values shows that 
most of the residuals are slightly larger than zero, and the 
upper bound shows a linear trend with slightly increasing val-
ues (Figure C.70). There are also many samples with large 
negative residuals located below the zero reference line, com-
pared with the small scale of predicted values. The Student’s 
t-test rejects the null hypothesis of zero residual mean. The 

Figure C.68. Residual histogram of midday— 
50th-percentile TTI—AllData.

Figure C.69. Residual normality plot of midday— 
50th-percentile TTI—AllData.

Table C.48. RMSE of Weekday— 
10th-Percentile TTI

RMSE All Data CA MN
Salt Lake 

City

Mean TTI 0.81% 0.74% 0.48% 1.30%
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residual histogram and normality plots are shown in Fig-
ures C.71 and C.72.

Weekday—10th-peRcentile tti—califoRnia

In this validation the Student’s t-test rejects the null hypoth-
esis of zero residual mean with a confidence level of 90%, and 
the normality test rejects the null hypothesis of normal dis-
tribution with the same threshold confidence level. The plot 
of residuals versus the predicted values illustrates similar pat-
terns as observed from the validation of the AllData set. All 
associated results and plots are included in the attachment.

Table C.49. Residual Analysis of 
Weekday—10th-Percentile TTI—AllData

Table C.49.a. Basic Statistical Measures

Location Variability

Mean 0.0014 Std deviation 0.0080

Median 0.0040 Variance 0.0001

Minimum -0.062 Range 0.0685

Maximum 0.0066 Interquartile range 0.0017

Table C.49.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0014 0.0004 0.0024

Std deviation 0.0080 0.0073 0.0088

Variance 0.0001 54E-6 0.0001

Table C.49.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.6645 Pr > t 0.0082

Table C.49.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5123 Pr < W <0.0001

Figure C.70. Residual plot of midday—10th-percentile 
TTI—AllData.

Figure C.71. Residual histogram of midday— 
10th-percentile TTI—AllData.

Figure C.72. Residual normality plot of midday— 
10th-percentile TTI—AllData.



104

Weekday—10th-peRcentile tti—MinneSota

In this validation the null hypothesis of zero residual mean 
and the null hypothesis of normal distribution are rejected 
with a confidence level of 90%. The plot of residuals versus 
the predicted values shows an almost linearly increasing 
trend with the exception of three samples located in the lower 
right corner of the plot. It does not exhibit the random pat-
tern expected from a good regression model. This indicates 
that the model may have missed some important indepen-
dent variables. All associated results and plots are included in 
the attachment.

Weekday—10th-peRcentile tti—Salt lake city

In this validation the Student’s t-test shows that the zero 
residual mean hypothesis can be rejected with a confidence 
level of 90%, and the normality test also shows that the null 
hypothesis of normal distribution can be rejected with the 
threshold confidence level. The plot of residual versus the 
predicted value presents a nonrandom pattern with large 
negative residuals below the zero reference line, as the pre-
dicted response is within a smaller range. All associated 
results and plots are included in the attachment.

Conclusions of the Data-Rich Weekday  
Model Validation

Most of the validations show an increasing trend of residu-
als in the residual versus predicted value plot. These non-
random patterns indicate that the assumption of the 
relationship between the dependent and independent vari-
ables is questionable, regardless of the size of the RMSE val-
ues. It is important to note that the RMSE criterion has 
inherited drawbacks and that the assumption of the rela-
tionship between variables described by the adopted model 
is critical.

The MN data set has several potential outliers caused pri-
marily by extremely large ILHL values that yield large residu-
als. These unusual residuals influence the statistical test 
results and the RMSE values.

Overall, the data-rich weekday models do not perform 
satisfactorily.

Conclusions

The validation of the L03 data-rich models was performed on 
three regional data sets: California, Minnesota, and Salt Lake 
City, along with the combined overall data set (AllData). The 
main conclusion is that the average prediction errors (mea-
sured by the RMSE) for each model are not acceptable across 
many of the regions. The RMSEs for each model and data set 
are presented in Table C.50.

From a regional perspective, for all time slices except the 
weekday time period, the RMSEs are the highest when the 
models are applied to the California data set. During 
the weekday time period, the RMSEs are the highest when 
the models are applied to the Minnesota data set, and the 
lowest when applied to the Salt Lake City data set. The high 
RMSEs for the weekday time period in the Minnesota data set 
are caused by several potential outliers influenced by very 
high ILHL values. When the RMSEs are interpreted by the 
predicted measure, it is evident that, across all of the time 
periods, the highest RMSEs occur for the prediction of  
the 99th-percentile TTI. The RMSEs tend to decrease as the 
predicted TTI measure lowers (i.e., the RMSEs for the 50th-
percentile models are lower than for the 80th-percentile mod-
els, which are lower than for the 95th-percentile models, etc.). 
This is to be expected, as there is naturally more variability 
among the validation data sections at the higher moments of 
the travel time distribution. In particular, the RMSEs for the 
10th-percentile travel time prediction are very low, especially 
during the midday and weekday time periods, when it is 
expected that the 10th-percentile travel time to be very close 
to the free-flow travel time.

From a time period perspective, the highest RMSEs are 
seen during the peak period, which is defined specifically for 
each section to cover time periods of at least 75 min during 
which the average speeds fall below 45 mph. The RMSEs are 
lower, though still high, for the peak hour models. The peak 
hour and peak period models are predicted by the critical 
D/C ratio, the ILHL and, for some of the models, the precipi-
tation factor. The RMSEs are the lowest during the midday 
period (11:00 a.m.–2:00 p.m.), during which congestion 
tends to be minimal. The midday period TTIs are predicted 
only by the critical D/C ratio. RMSEs during the weekday 
period (predicted by the average D/C ratio and, for some of 
the models, the ILHL), are slightly higher than they are for the 
midday period.

Results also indicate that the models violate many of the 
assumptions of generalized regression and thus have room 
for enhancement. Generally, a good regression model is 
expected to present randomly scattered residuals without 
obvious trends. However, increasing trends and other non-
random patterns were observed in the residual plots of many 
of the models. This indicates that the models may not be able 
to sufficiently describe the relationship between the indepen-
dent variables and the dependent variable. Table C.51 sum-
marizes the results of the t-test and normality test for each 
model as applied to the AllData set.

These results indicate that the models tend to either system-
atically overpredict the reliability measure (i.e., indicate that a 
section is less reliable than it actually is) or underpredict the 
reliability measure (i.e., indicate that a section is more reliable 
than it actually is). In all time periods except for the peak hour, 
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Table C.50. Summary of RMSE Values for Each Model by Region

Model Details RMSE Value by Region

Analysis Time Slice Model All Data CA MN
Salt Lake 

City

Peak period Mean TTI 96.94% 127.55% 21.59% -

99th Percentile 403.44% 607.76% 63.67% -

95th Percentile 251.95% 359.19% 45.85% -

80th Percentile 151.95% 206.54% 30.95% -

50th Percentile 89.55% 116.63% 23.15% -

10th Percentile 12.13% 14.43% 6.23% -

Peak hour Mean TTI 25.45% 26.97% 24.68% -

99th Percentile 50.74% 52.78% 47.46% -

95th Percentile 38.38% 40.19% 37.27% -

80th Percentile 35.13% 36.89% 34.06% -

50th Percentile 28.85% 32.41% 24.22% -

10th Percentile 18.50% 22.24% 12.14% -

Midday Mean TTI 6.24% 7.57% 4.07% 3.52%

99th Percentile 32.32% 34.95% 25.86% 34.01%

95th Percentile 15.62% 17.29% 14.01% 12.55%

80th Percentile 8.99% 10.86% 6.61% 3.60%

50th Percentile 5.43% 6.93% 2.09% 2.08%

10th Percentile 1.81% 2.20% 0.80% 1.33%

Weekday Mean TTI 19.74% 12.81% 35.99% 5.95%

99th Percentile 72.91% 50.04% 141.72% 30.87%

95th Percentile 83.82% 40.46% 197.82% 22.85%

80th Percentile 29.28% 14.84% 59.43% 5.75%

50th Percentile 4.68% 5.92% 1.71% 2.16%

10th Percentile 0.81% 0.74% 0.48% 1.30%

the null hypothesis of the normality test was rejected for all 
models, indicating that the residuals are nonnormally distrib-
uted. During the peak period, midday, and weekday time peri-
ods, the null hypothesis of the t-test was rejected for nearly all 
of the models, indicating that the mean of the residuals is non-
zero. The null hypotheses of these tests were most frequently 
not rejected during the peak hour time period, but only the 
mean TTI model of this time period performed satisfactorily 
well when considering the pattern of residuals.

Further investigation of the residual patterns by time 
period shows that during the peak period each of the models 

tends to underpredict the measured TTI at low TTI values 
and overpredict it at higher TTIs. The residuals also tend to 
get larger as the TTI increases. The peak hour models also 
exhibit a tendency to underpredict the measured TTI at low 
TTI values and overpredict it at higher TTIs. During the mid-
day period the main problem with the residuals is that they 
exhibit nonconstant variance, as seen through the cone-
shaped residual plots of the models, and have a tendency to 
overpredict the TTI. During the weekday period, the residu-
als of the models are mostly positive, indicating a tendency to 
consistently overpredict the TTI.
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Table C.51. Summary of Student’s t-Test and Shapiro-Wilk 
Normality Test Results for AllData Set

Model Details Null Hypothesis Result

Analysis Time Slice Model t-Testa Normality Testb

Peak period Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Reject Reject

10th Percentile Reject Reject

Peak hour Mean TTI Cannot Reject Cannot Reject

99th Percentile Cannot Reject Reject

95th Percentile Cannot Reject Cannot Reject

80th Percentile Reject Cannot Reject

50th Percentile Reject Cannot Reject

10th Percentile Cannot Reject Reject

Midday Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Cannot Reject Reject

10th Percentile Reject Reject

Weekday Mean TTI Reject Reject

99th Percentile Reject Reject

95th Percentile Reject Reject

80th Percentile Reject Reject

50th Percentile Cannot Reject Reject

10th Percentile Reject Reject

a t-test results indicate whether the null hypothesis assumption that the residuals satisfy 
zero residual mean can be rejected or not with a certain confidence level.
b Normality test results indicate whether the null hypothesis assumption that the residuals 
satisfy the normal distribution can be rejected or not with a certain confidence level.
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Peak Period

Mean TTI Model

Peak Period—Mean TTI Model—California

Appendix C Attachment

Table C.52. Residual Analysis of Peak 
Period—Mean TTI—California

Table C.52.a. Basic Statistical Measures

Location Variability

Mean 0.3287 Std deviation 0.7626

Median 0.0533 Variance 0.5815

Minimum -0.3479 Range 3.0176

Maximum 2.6696 Interquartile range 0.2987

Table C.52.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.3287 0.0940 0.5634

Std deviation 0.7626 0.6288 0.9692

Variance 0.5815 0.3954 0.9394

Table C.52.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.8263 Pr > t 0.0072

Table C.52.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6453 Pr < W <0.0001

Figure C.73. Residual plot of peak period—mean 
TTI—California.

Figure C.74. Residual histogram of peak period—
mean TTI—California.



108

MinneSota

Figure C.75. Residual normality plot of 
peak period—mean TTI—California.

Figure C.78. Residual normality plot of peak 
period—mean TTI—Minnesota.

Figure C.77. Residual histogram of peak period—
mean TTI—Minnesota.

Figure C.76. Residual plot of peak period—mean 
TTI—Minnesota.

Table C.53.c. Tests for Location: 
Mu0

Test Statistic p-Value

Student’s t t -0.205 Pr > t 0.8401

Table C.53.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8416 Pr < W 0.0049

Table C.53. Residual Analysis of Peak 
Period—Mean TTI—Minnesota

Table C.53.a. Basic Statistical Measures

Location Variability

Mean -0.009 Std deviation 0.2006

Median -0.073 Variance 0.0402

Minimum -0.247 Range 0.6507

Maximum 0.4042 Interquartile range 0.2395

Table C.53.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.009 -0.106 0.0873

Std deviation 0.2006 0.1516 0.2966

Variance 0.0402 0.0230 0.0880



109   

99th-Percentile TTI Model

California

Table C.54. Residual Analysis of Peak 
Period—99th-Percentile TTI—California

Table C.54.a. Basic Statistical Measures

Location Variability

Mean 0.8780 Std deviation 1.7696

Median 0.2508 Variance 3.1316

Minimum -0.725 Range 7.2825

Maximum 6.5571 Interquartile range 0.8412

Table C.54.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.8780 0.3334 1.4226

Std deviation 1.7696 1.4591 2.2492

Variance 3.1316 2.1291 5.0590

Table C.54.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 3.2534 Pr > t 0.0023

Table C.54.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6600 Pr < W <0.0001

Figure C.79. Residual plot of peak period— 
99th-percentile TTI—California.

Figure C.80. Residual histogram of peak period— 
99th-percentile TTI—California.

Figure C.81. Residual normality plot of peak 
period—99th-percentile TTI—California.
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Minnesota

Table C.55. Residual Analysis of Peak 
Period—99th-Percentile TTI—Minnesota

Table C.55.a. Basic Statistical Measures

Location Variability

Mean -0.201 Std deviation 0.4622

Median -0.332 Variance 0.2137

Minimum -0.861 Range 1.8231

Maximum 0.9624 Interquartile range 0.4244

Table C.55.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.201 -0.424 0.0221

Std deviation 0.4622 0.3493 0.6836

Variance 0.2137 0.1220 0.4673

Table C.55.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -1.893 Pr > t 0.0746

Table C.55.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9208 Pr < W 0.1171

Figure C.82. Residual plot of peak period— 
99th-percentile TTI—Minnesota.

Figure C.83. Residual histogram of peak period— 
99th-percentile TTI—Minnesota.

Figure C.84. Residual normality plot of peak 
period—99th-percentile TTI—Minnesota.
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95th-Percentile TTI Model

California

Table C.56. Residual Analysis of Peak 
Period—95th-Percentile TTI—California

Table C.56.a. Basic Statistical Measures

Location Variability

Mean 0.6326 Std deviation 1.4032

Median 0.1346 Variance 1.9691

Minimum -0.684 Range 5.7559

Maximum 5.0720 Interquartile range 0.6441

Table C.56.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.6326 0.2007 1.0645

Std deviation 1.4032 1.1570 1.7835

Variance 1.9691 1.3387 3.1810

Table C.56.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.9562 Pr > t 0.0051

Table C.56.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6563 Pr < W <0.0001

Figure C.85. Residual plot of peak period— 
95th-percentile TTI—California.

Figure C.86. Residual histogram of peak period— 
95th-percentile TTI—California.

Figure C.87. Residual normality plot of peak 
period—95th-percentile TTI—California.
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Minnesota

Table C.57. Residual Analysis of Peak 
Period—95th-Percentile TTI—Minnesota

Table C.57.a. Basic Statistical Measures

Location Variability

Mean -0.161 Std deviation 0.3506

Median -0.245 Variance 0.1229

Minimum -0.566 Range 1.2796

Maximum 0.7138 Interquartile range 0.3646

Table C.57.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.161 -0.330 0.0077

Std deviation 0.3506 0.2649 0.5184

Variance 0.1229 0.0702 0.2688

Table C.57.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.005 Pr > t 0.0602

Table C.57.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8942 Pr < W 0.0383

Figure C.88. Residual plot of peak period— 
95th-percentile TTI—Minnesota.

Figure C.89. Residual histogram of peak period— 
95th-percentile TTI—Minnesota.

Figure C.90. Residual normality plot of peak 
period—95th-percentile TTI—Minnesota.
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80th-Percentile TTI Model

California

Table C.58. Residual Analysis of Peak 
Period—80th-Percentile TTI—California

Table C.58.a. Basic Statistical Measures

Location Variability

Mean 0.4384 Std deviation 1.0430

Median 0.0584 Variance 1.0879

Minimum -0.381 Range 4.0617

Maximum 3.6805 Interquartile range 0.4264

Table C.58.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.4384 0.1174 0.7594

Std deviation 1.0430 0.8600 1.3257

Variance 1.0879 0.7396 1.7574

Table C.58.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.7565 Pr > t 0.0086

Table C.58.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6391 Pr < W <0.0001

Figure C.91. Residual plot of peak period— 
80th-percentile TTI—California.

Figure C.92. Residual histogram of peak 
period—80th-percentile TTI—California.

Figure C.93. Residual normality plot of peak 
period—80th-percentile TTI—California.
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Minnesota

Table C.59. Residual Analysis of Peak 
Period—80th-Percentile TTI—Minnesota

Table C.59.a. Basic Statistical Measures

Location Variability

Mean -0.089 Std deviation 0.2616

Median -0.188 Variance 0.0684

Minimum -0.404 Range 0.9128

Maximum 0.5086 Interquartile range 0.3141

Table C.59.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.089 -0.215 0.0372

Std deviation 0.2616 0.1976 0.3868

Variance 0.0684 0.0391 0.1496

Table C.59.c. Tests for Location: Mu0

Test Statistic p-Value

Student’s t t -1.481 Pr > t 0.1560

Table C.59.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8741 Pr < W 0.0169

Figure C.94. Residual plot of peak period— 
80th-percentile TTI—Minnesota.

Figure C.95. Residual histogram of peak period— 
80th-percentile TTI—Minnesota.

Figure C.96. Residual normality plot of peak 
period—80th-percentile TTI—Minnesota.
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50th-Percentile TTI Model

California

Table C.60. Residual Analysis of Peak 
Period—50th-Percentile TTI—California

Table C.60.a. Basic Statistical Measures

Location Variability

Mean 0.2892 Std deviation 0.7254

Median 0.0125 Variance 0.5261

Minimum -0.368 Range 2.8998

Maximum 2.5315 Interquartile range 0.3859

Table C.60.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2892 0.0660 0.5125

Std deviation 0.7254 0.5981 0.9219

Variance 0.5261 0.3577 0.8500

Table C.60.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.6147 Pr > t 0.0124

Table C.60.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6624 Pr < W <0.0001

Figure C.97. Residual plot of peak period— 
50th-percentile TTI—California.

Figure C.98. Residual histogram of peak period— 
50th-percentile TTI—California.

Figure C.99. Residual normality plot of peak 
period—50th-percentile TTI—California.
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Minnesota

Table C.61. Residual Analysis of Peak 
Period—50th-Percentile TTI—Minnesota

Table C.61.a. Basic Statistical Measures

Location Variability

Mean 0.0574 Std deviation 0.2056

Median -0.033 Variance 0.0423

Minimum -0.158 Range 0.7232

Maximum 0.5649 Interquartile range 0.2754

Table C.61.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0574 -0.042 0.1565

Std deviation 0.2056 0.1554 0.3041

Variance 0.0423 0.0241 0.0925

Table C.61.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 1.2169 Pr > t 0.2394

Table C.61.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8309 Pr < W 0.0033

Figure C.100. Residual plot of peak period— 
50th-percentile TTI—Minnesota.

Figure C.101. Residual histogram of peak period— 
50th-percentile TTI—Minnesota.

Figure C.102. Residual normality plot of peak 
period—50th-percentile TTI—Minnesota.
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10th-Percentile TTI Model

California

Table C.62. Residual Analysis of Peak 
Period—10th-Percentile TTI—California

Table C.62.a. Basic Statistical Measures

Location Variability

Mean 0.0276 Std deviation 0.1335

Median 0.0234 Variance 0.0178

Minimum -0.344 Range 0.7344

Maximum 0.3906 Interquartile range 0.0854

Table C.62.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0276 -0.013 0.0687

Std deviation 0.1335 0.1100 0.1696

Variance 0.0178 0.0121 0.0288

Table C.62.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 1.3572 Pr > t 0.1820

Table C.62.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8876 Pr < W 0.0005

Figure C.103. Residual plot of peak period— 
10th-percentile TTI—California.

Figure C.104. Residual histogram of peak period— 
10th-percentile TTI—California.

Figure C.105. Residual normality plot of peak 
period—10th-percentile TTI—California.
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Minnesota

Table C.63. Residual Analysis of Peak 
Period—10th-Percentile TTI—Minnesota

Table C.63.a. Basic Statistical Measures

Location Variability

Mean 0.0521 Std deviation 0.0314

Median 0.0553 Variance 0.0010

Minimum -0.023 Range 0.1273

Maximum 0.1046 Interquartile range 0.0457

Table C.63.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0521 0.0370 0.0673

Std deviation 0.0314 0.0238 0.0465

Variance 0.0010 0.0006 0.0022

Table C.63.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 7.2260 Pr > t <0.0001

Table C.63.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9643 Pr < W 0.6593

Figure C.106. Residual plot of peak period— 
10th-percentile TTI—Minnesota.

Figure C.107. Residual histogram of peak period— 
10th-percentile TTI—Minnesota.

Figure C.108. Residual normality plot of peak 
period—10th-percentile TTI—Minnesota.
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Peak Hour

Mean TTI Model

California

Table C.64. Residual Analysis of Peak 
Hour—Mean TTI—California

Table C.64.a. Basic Statistical Measures

Location Variability

Mean -0.085 Std deviation 0.2258

Median -0.055 Variance 0.0510

Minimum -0.547 Range 0.9459

Maximum 0.3987 Interquartile range 0.2853

Table C.64.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.085 -0.155 -0.016

Std deviation 0.2258 0.1862 0.2870

Variance 0.0510 0.0347 0.0824

Table C.64.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.470 Pr > t 0.0177

Table C.64.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9801 Pr < W 0.6519

Figure C.109. Residual plot of peak hour—mean 
TTI—California.

Figure C.110. Residual histogram of peak hour—
mean TTI—California.

Figure C.111. Residual normality plot of peak 
hour—mean TTI—California.



120

Minnesota

Table C.65.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9361 Pr < W 0.1203

Table C.65.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 1.2588 Pr > t 0.2202

Table C.65.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0549 -0.035 0.1449

Std deviation 0.2181 0.1703 0.3034

Variance 0.0476 0.0290 0.0920

Table C.65.a. Basic Statistical Measures

Location Variability

Mean 0.0549 Std deviation 0.2181

Median 0.1414 Variance 0.0476

Minimum -0.422 Range 0.7718

Maximum 0.3501 Interquartile range 0.2612

Table C.65. Residual Analysis of Peak  
Hour—Mean TTI—Minnesota

Figure C.112. Residual plot of peak hour—mean 
TTI—Minnesota.

Figure C.113. Residual histogram of peak hour—
mean TTI—Minnesota.

Figure C.114. Residual normality plot of peak 
hour—mean TTI—Minnesota.
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99th-Percentile TTI Model

California

Table C.66. Residual Analysis of Peak 
Hour—99th-Percentile TTI—California

Table C.66.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9148 Pr < W 0.0036

Table C.66.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 0.2594 Pr > t 0.7966

Table C.66.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0170 -0.115 0.1488

Std deviation 0.4285 0.3533 0.5446

Variance 0.1836 0.1248 0.2966

Table C.66.a. Basic Statistical Measures

Location Variability

Mean 0.0170 Std deviation 0.4285

Median -0.046 Variance 0.1836

Minimum -0.832 Range 2.2377

Maximum 1.4057 Interquartile range 0.3914

Figure C.115. Residual plot of peak hour— 
99th-percentile TTI—California.

Figure C.116. Residual histogram of peak hour— 
99th-percentile TTI—California.

Figure C.117. Residual normality plot of peak 
hour—99th-percentile TTI—California.
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Minnesota

Table C.67. Residual Analysis of Peak 
Hour—99th-Percentile TTI—Minnesota

Table C.67.a. Basic Statistical Measures

Location Variability

Mean -0.156 Std deviation 0.3630

Median -0.114 Variance 0.1318

Minimum -0.912 Range 1.3634

Maximum 0.4517 Interquartile range 0.3377

Table C.67.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9409 Pr < W 0.1552

Table C.67.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.147 Pr > t 0.0421

Table C.67.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.156 -0.306 -0.006

Std deviation 0.3630 0.2835 0.5051

Variance 0.1318 0.0804 0.2551

Figure C.118. Residual plot of peak hour— 
99th-percentile TTI—Minnesota.

Figure C.119. Residual histogram of peak hour— 
99th-percentile TTI—Minnesota.

Figure C.120. Residual normality plot of peak 
hour—99th-percentile TTI—Minnesota.
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95th-Percentile TTI Model

California

Table C.68.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.877 Pr > t 0.3854

Table C.68.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.045 -0.150 0.0589

Std deviation 0.3387 0.2793 0.4305

Variance 0.1147 0.0780 0.1853

Table C.68. Residual Analysis of Peak 
Hour—95th-Percentile TTI—California

Table C.68.a. Basic Statistical Measures

Location Variability

Mean -0.045 Std deviation 0.3387

Median -0.057 Variance 0.1147

Minimum -0.623 Range 1.5815

Maximum 0.9590 Interquartile range 0.4299

Table C.68.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9664 Pr < W 0.2357

Figure C.121. Residual plot of peak hour— 
95th-percentile TTI—California.

Figure C.123. Residual normality plot of peak 
hour—95th-percentile TTI—California.

Figure C.122. Residual histogram of peak hour— 
95th-percentile TTI—California.
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Minnesota

Table C.69. Residual Analysis of Peak 
Hour—95th-Percentile TTI—Minnesota

Table C.69.a. Basic Statistical Measures

Location Variability

Mean -0.012 Std deviation 0.3231

Median 0.0493 Variance 0.1044

Minimum -0.757 Range 1.2923

Maximum 0.5351 Interquartile range 0.3942

Table C.69.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9464 Pr < W 0.2083

Table C.69.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.188 Pr > t 0.8522

Table C.69.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.012 -0.146 0.1212

Std deviation 0.3231 0.2523 0.4494

Variance 0.1044 0.0636 0.2020

Figure C.124. Residual plot of peak hour— 
95th-percentile TTI—Minnesota.

Figure C.125. Residual histogram of peak hour— 
95th-percentile TTI—Minnesota.

Figure C.126. Residual normality plot of peak 
hour—95th-percentile TTI—Minnesota.
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80th-Percentile TTI Model

California

Table C.70.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.127 -0.216 -0.037

Std deviation 0.2908 0.2398 0.3696

Variance 0.0846 0.0575 0.1366

Table C.70.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.855 Pr > t 0.0067

Table C.70.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9143 Pr < W 0.0035

Table C.70. Residual Analysis of Peak 
Hour—80th-Percentile TTI—California

Table C.70.a. Basic Statistical Measures

Location Variability

Mean -0.127 Std deviation 0.2908

Median -0.187 Variance 0.0846

Minimum -0.579 Range 1.2892

Maximum 0.7099 Interquartile range 0.2590

Figure C.127. Residual plot of peak hour— 
80th-percentile TTI—California.

Figure C.128. Residual histogram of peak hour— 
80th-percentile TTI—California.

Figure C.129. Residual normality plot of peak 
hour—80th-percentile TTI—California.



126

Minnesota

Table C.71. Residual Analysis of Peak 
Hour—80th-Percentile TTI—Minnesota

Table C.71.a. Basic Statistical Measures

Location Variability

Mean -0.102 Std deviation 0.2805

Median -0.076 Variance 0.0787

Minimum -0.738 Range 1.0207

Maximum 0.2824 Interquartile range 0.3547

Table C.71.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.102 -0.218 0.0139

Std deviation 0.2805 0.2190 0.3902

Variance 0.0787 0.0480 0.1523

Table C.71.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9279 Pr < W 0.0779

Table C.71.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -1.816 Pr > t 0.0818

Figure C.130. Residual plot of peak hour— 
80th-percentile TTI—Minnesota.

Figure C.131. Residual histogram of peak hour— 
80th-percentile TTI—Minnesota.

Figure C.132. Residual normality plot of peak 
hour—80th-percentile TTI—Minnesota.
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50th-Percentile TTI Model

California

Table C.72.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9844 Pr < W 0.8187

Table C.72.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -3.750 Pr > t 0.0005

Table C.72.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.141 -0.216 -0.065

Std deviation 0.2458 0.2027 0.3125

Variance 0.0604 0.0411 0.0976

Table C.72. Residual Analysis of Peak 
Hour—50th-Percentile TTI—California

Table C.72.a. Basic Statistical Measures

Location Variability

Mean -0.141 Std deviation 0.2458

Median -0.161 Variance 0.0604

Minimum -0.624 Range 0.9830

Maximum 0.3588 Interquartile range 0.3255

Figure C.133. Residual plot of peak hour— 
50th-percentile TTI—California.

Figure C.134. Residual histogram of peak hour— 
50th-percentile TTI—California.

Figure C.135. Residual normality plot of peak 
hour—50th-percentile TTI—California.
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Minnesota

Table C.73.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0219 -0.069 0.1128

Std deviation 0.2202 0.1719 0.3063

Variance 0.0485 0.0296 0.0938

Table C.73.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 0.4982 Pr > t 0.6228

Table C.73.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9545 Pr < W 0.3161

Table C.73. Residual Analysis of Peak 
Hour—50th-Percentile TTI—Minnesota

Table C.73.a. Basic Statistical Measures

Location Variability

Mean 0.0219 Std deviation 0.2202

Median 0.0730 Variance 0.0485

Minimum -0.426 Range 0.8297

Maximum 0.4035 Interquartile range 0.3632

Figure C.136. Residual plot of peak hour— 
50th-percentile TTI—Minnesota.

Figure C.137. Residual histogram of peak hour— 
50th-percentile TTI—Minnesota.

Figure C.138. Residual normality plot of peak 
hour—50th-percentile TTI—Minnesota.
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10th-Percentile TTI Model

California

Table C.74.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8385 Pr < W <0.0001

Table C.74.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.603 Pr > t 0.0127

Table C.74.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.075 -0.133 -0.017

Std deviation 0.1886 0.1555 0.2397

Variance 0.0356 0.0242 0.0574

Table C.74. Residual Analysis of Peak 
Hour—10th-Percentile TTI—California

Table C.74.a. Basic Statistical Measures

Location Variability

Mean -0.075 Std deviation 0.1886

Median -0.027 Variance 0.0356

Minimum -0.640 Range 0.7884

Maximum 0.1486 Interquartile range 0.1986

Figure C.139. Residual plot of peak hour— 
10th-percentile TTI—California.

Figure C.141. Residual normality plot of peak 
hour—10th-percentile TTI—California.

Figure C.140. Residual histogram of peak hour— 
10th-percentile TTI—California.
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Minnesota

Table C.75. Residual Analysis of Peak 
Hour—10th-Percentile TTI—Minnesota

Table C.75.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0770 0.0412 0.1128

Std deviation 0.0866 0.0677 0.1205

Variance 0.0075 0.0046 0.0145

Table C.75.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 4.4440 Pr > t 0.0002

Table C.75.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7271 Pr < W <0.0001

Table C.75.a. Basic Statistical Measures

Location Variability

Mean 0.0770 Std deviation 0.0866

Median 0.1010 Variance 0.0075

Minimum -0.261 Range 0.4352

Maximum 0.1739 Interquartile range 0.0461

Figure C.142. Residual plot of peak hour— 
10th-percentile TTI—Minnesota.

Figure C.144. Residual normality plot of peak 
hour—10th-percentile TTI—Minnesota.

Figure C.143. Residual histogram of peak hour— 
10th-percentile TTI—Minnesota.
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Midday

Mean TTI Model

California

Table C.76.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0164 0.0045 0.0283

Std deviation 0.0714 0.0639 0.0809

Variance 0.0051 0.0041 0.0065

Table C.76.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5476 Pr < W <0.0001

Table C.76.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.7157 Pr > t 0.0075

Table C.76. Residual Analysis of Midday—
Mean TTI—California

Table C.76.a. Basic Statistical Measures

Location Variability

Mean 0.0164 Std deviation 0.0714

Median 0.0377 Variance 0.0051

Minimum -0.443 Range 0.5167

Maximum 0.0741 Interquartile range 0.0370

Figure C.145. Residual plot of midday—mean TTI—
California.

Figure C.146. Residual histogram of midday—mean 
TTI—California.

Figure C.147. Residual normality plot of midday— 
mean TTI—California.



132

Minnesota

Table C.77. Residual Analysis of Midday—
Mean TTI—Minnesota

Table C.77.a. Basic Statistical Measures

Location Variability

Mean 0.0273 Std deviation 0.0294

Median 0.0339 Variance 0.0009

Minimum -0.138 Range 0.1943

Maximum 0.0560 Interquartile range 0.0259

Table C.77.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0273 0.0197 0.0349

Std deviation 0.0294 0.0249 0.0358

Variance 0.0009 0.0006 0.0013

Table C.77.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 7.2065 Pr > t <0.0001

Table C.77.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6904 Pr < W <0.0001

Figure C.148. Residual plot of midday—mean  
TTI—Minnesota.

Figure C.150. Residual normality plot of midday—
mean TTI—Minnesota.

Figure C.149. Residual histogram of midday—mean 
TTI—Minnesota.
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Salt Lake City

Table C.78. Residual Analysis of Midday—
Mean TTI—Salt Lake City

Table C.78.a. Basic Statistical Measures

Location Variability

Mean 0.0281 Std deviation 0.0206

Median 0.0342 Variance 0.0004

Minimum -0.016 Range 0.0670

Maximum 0.0507 Interquartile range 0.0207

Table C.78.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8171 Pr < W <0.0001

Table C.78.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 7.7165 Pr > t <0.0001

Table C.78.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0281 0.0207 0.0355

Std deviation 0.0206 0.0165 0.0274

Variance 0.0004 0.0003 0.0007

Figure C.151. Residual plot of midday—mean TTI—
Salt Lake City.

Figure C.153. Residual normality plot of midday—
mean TTI—Salt Lake City.

Figure C.152. Residual histogram of midday—mean 
TTI—Salt Lake City.
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99th-Percentile TTI Model

California

Table C.79. Residual Analysis of Midday—
99th-Percentile TTI—California

Table C.79.a. Basic Statistical Measures

Location Variability

Mean 0.2094 Std deviation 0.2152

Median 0.2689 Variance 0.0463

Minimum -0.535 Range 1.2456

Maximum 0.7110 Interquartile range 0.2254

Table C.79.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2094 0.1735 0.2454

Std deviation 0.2152 0.1926 0.2438

Variance 0.0463 0.0371 0.0595

Table C.79.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 11.517 Pr > t <0.0001

Table C.79.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8888 Pr < W <0.0001

Figure C.154. Residual plot of midday— 
99th-percentile TTI—California.

Figure C.156. Residual normality plot of midday— 
99th-percentile TTI—California.

Figure C.155. Residual histogram of midday— 
99th-percentile TTI—California.
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Minnesota

Table C.80.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1419 0.0948 0.1891

Std deviation 0.1825 0.1547 0.2225

Variance 0.0333 0.0239 0.0495

Table C.80.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.0250 Pr > t <0.0001

Table C.80.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8145 Pr < W <0.0001

Table C.80. Residual Analysis of Midday—
99th-Percentile TTI—Minnesota

Table C.80.a. Basic Statistical Measures

Location Variability

Mean 0.1419 Std deviation 0.1825

Median 0.1902 Variance 0.0333

Minimum -0.457 Range 0.8090

Maximum 0.3525 Interquartile range 0.1319

Figure C.157. Residual plot of midday— 
99th-percentile TTI—Minnesota.

Figure C.158. Residual histogram of midday— 
99th-percentile TTI—Minnesota.

Figure C.159. Residual normality plot of midday— 
99th-percentile TTI—Minnesota.
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Salt Lake City

Table C.81. Residual Analysis of Midday—
99th-Percentile TTI—Salt Lake City

Table C.81.a. Basic Statistical Measures

Location Variability

Mean 0.2697 Std deviation 0.1158

Median 0.3032 Variance 0.0134

Minimum -0.257 Range 0.6388

Maximum 0.3821 Interquartile range 0.0960

Table C.81.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2697 0.2279 0.3114

Std deviation 0.1158 0.0928 0.1539

Variance 0.0134 0.0086 0.0237

Table C.81.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 13.175 Pr > t <0.0001

Table C.81.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6933 Pr < W <0.0001

Figure C.160. Residual plot of midday— 
99th-percentile TTI—Salt Lake City.

Figure C.162. Residual normality plot of midday— 
99th-percentile TTI—Salt Lake City.

Figure C.161. Residual histogram of midday— 
99th-percentile TTI—Salt Lake City.
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95th-Percentile TTI Model

California

Table C.82. Residual Analysis of Midday—
95th-Percentile TTI—California

Table C.82.a. Basic Statistical Measures

Location Variability

Mean 0.0787 Std deviation 0.1392

Median 0.1156 Variance 0.0194

Minimum -0.662 Range 0.9157

Maximum 0.2537 Interquartile range 0.0949

Table C.82.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0787 0.0555 0.1020

Std deviation 0.1392 0.1246 0.1577

Variance 0.0194 0.0155 0.0249

Table C.82c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.6931 Pr > t <0.0001

Table C.82.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6580 Pr < W <0.0001

Figure C.163. Residual plot of midday— 
95th-percentile TTI—California.

Figure C.165. Residual normality plot of midday— 
95th-percentile TTI—California.

Figure C.164. Residual histogram of midday— 
95th-percentile TTI—California.
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Minnesota

Table C.83. Residual Analysis of Midday—
95th-Percentile TTI—Minnesota

Table C.83.a. Basic Statistical Measures

Location Variability

Mean 0.0615 Std deviation 0.1168

Median 0.0957 Variance 0.0136

Minimum -0.395 Range 0.5632

Maximum 0.1684 Interquartile range 0.0782

Table C.83.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0615 0.0313 0.0916

Std deviation 0.1168 0.0990 0.1424

Variance 0.0136 0.0098 0.0203

Table C.83.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 4.0784 Pr > t 0.0001

Table C.83.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7090 Pr < W <0.0001

Figure C.166. Residual plot of midday— 
95th-percentile TTI—Minnesota.

Figure C.168. Residual normality plot of midday— 
95th-percentile TTI—Minnesota.

Figure C.167. Residual histogram of midday— 
95th-percentile TTI—Minnesota.
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Salt Lake City

Table C.84. Residual Analysis of Midday—
95th-Percentile TTI—Salt Lake City

Table C.84.a. Basic Statistical Measures

Location Variability

Mean 0.1034 Std deviation 0.0583

Median 0.1182 Variance 0.0034

Minimum -0.170 Range 0.3232

Maximum 0.1527 Interquartile range 0.0325

Table C.84.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1034 0.0824 0.1244

Std deviation 0.0583 0.0467 0.0775

Variance 0.0034 0.0022 0.0060

Table C.84.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 10.036 Pr > t <0.0001

Table C.84.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6238 Pr < W <0.0001

Figure C.169. Residual plot of midday— 
95th-percentile TTI—Salt Lake City.

Figure C.170. Residual histogram of midday— 
95th-percentile TTI—Salt Lake City.

Figure C.171. Residual normality plot of midday— 
95th-percentile TTI—Salt Lake City.
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80th-Percentile TTI Model

California

Table C.85. Residual Analysis of Midday—
80th-Percentile TTI—California

Table C.85.a. Basic Statistical Measures

Location Variability

Mean 0.0047 Std deviation 0.1033

Median 0.0368 Variance 0.0107

Minimum -0.627 Range 0.7005

Maximum 0.0737 Interquartile range 0.0517

Table C.85.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0047 -0.013 0.0220

Std deviation 0.1033 0.0925 0.1171

Variance 0.0107 0.0086 0.0137

Table C.85.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 0.5383 Pr > t 0.5912

Table C.85.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5368 Pr < W <0.0001

Figure C.172. Residual plot of midday— 
80th-percentile TTI—California.

Figure C.174. Residual normality plot of midday— 
80th-percentile TTI—California.

Figure C.173. Residual histogram of midday— 
80th-percentile TTI—California.
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Minnesota

Table C.86. Residual Analysis of Midday—
80th-Percentile TTI—Minnesota

Table C.86.a. Basic Statistical Measures

Location Variability

Mean 0.0231 Std deviation 0.0602

Median 0.0365 Variance 0.0036

Minimum -0.360 Range 0.4228

Maximum 0.0631 Interquartile range 0.0276

Table C.86.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0231 0.0075 0.0386

Std deviation 0.0602 0.0510 0.0734

Variance 0.0036 0.0026 0.0054

Table C.86.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 2.9669 Pr > t 0.0043

Table C.86.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4994 Pr < W <0.0001

Figure C.175. Residual plot of midday— 
80th-percentile TTI—Minnesota.

Figure C.176. Residual histogram of midday— 
80th-percentile TTI—Minnesota.

Figure C.177. Residual normality plot of midday— 
80th-percentile TTI—Minnesota.
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Salt Lake City

Figure C.178. Residual plot of midday— 
80th-percentile TTI—Salt Lake City.

Table C.87. Residual Analysis of Midday—
80th-Percentile TTI—Salt Lake City

Table C.87.a. Basic Statistical Measures

Location Variability

Mean 0.0265 Std deviation 0.0238

Median 0.0350 Variance 0.0006

Minimum -0.025 Range 0.0761

Maximum 0.0511 Interquartile range 0.0249

Table C.87.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0265 0.0179 0.0350

Std deviation 0.0238 0.0191 0.0316

Variance 0.0006 0.0004 0.0010

Table C.87.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.3027 Pr > t <0.0001

Table C.87.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8161 Pr < W <0.0001

Figure C.179. Residual histogram of midday— 
80th-percentile TTI—Salt Lake City.

Figure C.180. Residual normality plot of midday— 
80th-percentile TTI—Salt Lake City.
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50th-Percentile TTI Model

California

Figure C.181. Residual plot of midday— 
50th-percentile TTI—California.

Table C.88. Residual Analysis of Midday—
50th-Percentile TTI—California

Table C.88.a. Basic Statistical Measures

Location Variability

Mean -0.004 Std deviation 0.0671

Median 0.0181 Variance 0.0045

Minimum -0.471 Range 0.5043

Maximum 0.0333 Interquartile range 0.0258

Table C.88.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.004 -0.015 0.0070

Std deviation 0.0671 0.0601 0.0761

Variance 0.0045 0.0036 0.0058

Table C.88.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.740 Pr > t 0.4607

Table C.88.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4886 Pr < W <0.0001

Figure C.182. Residual histogram of midday— 
50th-percentile TTI—California.

Figure C.183. Residual normality plot of midday— 
50th-percentile TTI—California.
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Minnesota

Table C.89. Residual Analysis of Midday—
50th-Percentile TTI—Minnesota

Table C.89.a. Basic Statistical Measures

Location Variability

Mean 0.0177 Std deviation 0.0108

Median 0.0208 Variance 0.0001

Minimum -0.020 Range 0.0485

Maximum 0.0283 Interquartile range 0.0081

Table C.89.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0177 0.0150 0.0205

Std deviation 0.0108 0.0091 0.0131

Variance 0.0001 0.0001 0.0002

Table C.89.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 12.764 Pr > t <0.0001

Table C.89.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7497 Pr < W <0.0001

Figure C.184. Residual plot of midday— 
50th-percentile TTI—Minnesota.

Figure C.185. Residual histogram of midday— 
50th-percentile TTI—Minnesota.

Figure C.186. Residual normality plot of midday— 
50th-percentile TTI—Minnesota.



145   

Salt Lake City

Table C.90. Residual Analysis of Midday—
50th-Percentile TTI—Salt Lake City

Table C.90.a. Basic Statistical Measures

Location Variability

Mean 0.0062 Std deviation 0.0199

Median 0.0152 Variance 0.0004

Minimum -0.036 Range 0.0586

Maximum 0.0224 Interquartile range 0.0230

Table C.90.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0062 -93E-5 0.0134

Std deviation 0.0199 0.0159 0.0264

Variance 0.0004 0.0003 0.0007

Table C.90.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 1.7763 Pr > t 0.0855

Table C.90.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7216 Pr < W <0.0001

Figure C.187. Residual plot of midday— 
50th-percentile TTI—Salt Lake City.

Figure C.188. Residual histogram of midday— 
50th-percentile TTI—Salt Lake City.

Figure C.189. Residual normality plot of midday— 
50th-percentile TTI—Salt Lake City.
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10th-Percentile TTI Model

California

Table C.91. Residual Analysis of Midday—
10th-Percentile TTI—California

Table C.91.a. Basic Statistical Measures

Location Variability

Mean 0.0016 Std deviation 0.0218

Median 0.0075 Variance 0.0005

Minimum -0.138 Range 0.1547

Maximum 0.0168 Interquartile range 0.0050

Table C.91.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0016 -0.002 0.0052

Std deviation 0.0218 0.0195 0.0247

Variance 0.0005 0.0004 0.0006

Table C.91.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 0.8584 Pr > t 0.3922

Table C.91.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4094 Pr < W <0.0001

Figure C.190. Residual plot of midday— 
10th-percentile TTI—California.

Figure C.192. Residual normality plot of midday— 
10th-percentile TTI—California.

Figure C.191. Residual histogram of midday— 
10th-percentile TTI—California.
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Minnesota

Table C.92. Residual Analysis of Midday—
10th-Percentile TTI—Minnesota

Table C.92.a. Basic Statistical Measures

Location Variability

Mean 0.0069 Std deviation 0.0041

Median 0.0079 Variance 171E-7

Minimum -0.011 Range 0.0208

Maximum 0.0097 Interquartile range 0.0018

Table C.92.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0069 0.0058 0.0079

Std deviation 0.0041 0.0035 0.0050

Variance 171E-7 123E-7 254E-7

Table C.92.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 12.851 Pr > t <0.0001

Table C.92.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5066 Pr < W <0.0001

Figure C.193. Residual plot of midday— 
10th-percentile TTI—Minnesota.

Figure C.194. Residual histogram of midday— 
10th-percentile TTI—Minnesota.

Figure C.195. Residual normality plot of midday— 
10th-percentile TTI—Minnesota.
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Salt Lake City

Table C.93. Residual Analysis of Midday—
10th-Percentile TTI—Salt Lake City

Table C.93.a. Basic Statistical Measures

Location Variability

Mean -0.002 Std deviation 0.0133

Median 0.0053 Variance 0.0002

Minimum -0.030 Range 0.0381

Maximum 0.0077 Interquartile range 0.0138

Table C.93.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.002 -0.006 0.0033

Std deviation 0.0133 0.0107 0.0177

Variance 0.0002 0.0001 0.0003

Table C.93.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.651 Pr > t 0.5199

Table C.93.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6587 Pr < W <0.0001

Figure C.198. Residual normality plot of midday— 
10th-percentile TTI—Salt Lake City.

Figure C.197. Residual histogram of midday— 
10th-percentile TTI—Salt Lake City.

Figure C.196. Residual plot of midday— 
10th-percentile TTI—Salt Lake City.
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Weekday

Mean TTI Model

California

Table C.94. Residual Analysis of 
Weekday—Mean TTI—California

Table C.94.a. Basic Statistical Measures

Location Variability

Mean 0.0936 Std deviation 0.0761

Median 0.0970 Variance 0.0058

Minimum -0.234 Range 0.5556

Maximum 0.3215 Interquartile range 0.0605

Table C.94.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0936 0.0810 0.1063

Std deviation 0.0761 0.0682 0.0862

Variance 0.0058 0.0046 0.0074

Table C.94.c. Tests for Location: Mu0

Test Statistic p-Value

Student’s t t 14.660 Pr > t <0.0001

Table C.94.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9011 Pr < W <0.0001

Figure C.201. Residual normality plot of  
weekday—mean TTI—California.

Figure C.200. Residual histogram of weekday—
mean TTI—California.

Figure C.199. Residual plot of weekday—mean  
TTI—California.
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Minnesota

Table C.95. Residual Analysis of 
Weekday—Mean TTI—Minnesota

Table C.95.a. Basic Statistical Measures

Location Variability

Mean 0.2352 Std deviation 0.1997

Median 0.1658 Variance 0.0399

Minimum -0.002 Range 1.1476

Maximum 1.1458 Interquartile range 0.0740

Table C.95.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2352 0.1836 0.2867

Std deviation 0.1997 0.1692 0.2435

Variance 0.0399 0.0286 0.0593

Table C.95.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 9.1235 Pr > t <0.0001

Table C.95.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.5745 Pr < W <0.0001

Figure C.202. Residual plot of weekday—mean  
TTI—Minnesota.

Figure C.204. Residual normality plot of  
weekday—mean TTI—Minnesota.

Figure C.203. Residual histogram of weekday—
mean TTI—Minnesota.
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Salt Lake City

Table C.96. Residual Analysis of 
Weekday—Mean TTI—Salt Lake City

Table C.96.a. Basic Statistical Measures

Location Variability

Mean 0.0503 Std deviation 0.0290

Median 0.0597 Variance 0.0008

Minimum -0.000 Range 0.1074

Maximum 0.1072 Interquartile range 0.0423

Table C.96.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0503 0.0394 0.0611

Std deviation 0.0290 0.0231 0.0390

Variance 0.0008 0.0005 0.0015

Table C.96.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 9.4868 Pr > t <0.0001

Table C.96.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8662 Pr < W 0.0014

Figure C.205. Residual plot of weekday—mean  
TTI—Salt Lake City.

Figure C.206. Residual histogram of weekday—
mean TTI—Salt Lake City.

Figure C.207. Residual normality plot of  
weekday—mean TTI—Salt Lake City.
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99th-Percentile TTI Model

California

Table C.97. Residual Analysis of 
Weekday—99th-Percentile TTI—California

Table C.97.a. Basic Statistical Measures

Location Variability

Mean 0.2965 Std deviation 0.2779

Median 0.2891 Variance 0.0772

Minimum -0.362 Range 1.4728

Maximum 1.1110 Interquartile range 0.3403

Table C.97.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2965 0.2504 0.3426

Std deviation 0.2779 0.2489 0.3146

Variance 0.0772 0.0620 0.0990

Table C.97.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 12.714 Pr > t <0.0001

Table C.97.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9824 Pr < W 0.0650

Figure C.210. Residual normality plot of 
weekday—99th-percentile TTI—California.

Figure C.209. Residual histogram of weekday— 
99th-percentile TTI—California.

Figure C.208. Residual plot of weekday— 
99th-percentile TTI—California.
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Minnesota

Table C.98. Residual Analysis of 
Weekday—99th-Percentile TTI—Minnesota

Table C.98.a. Basic Statistical Measures

Location Variability

Mean 0.5043 Std deviation 0.7305

Median 0.5237 Variance 0.5336

Minimum -0.480 Range 4.0280

Maximum 3.5480 Interquartile range 0.5125

Table C.98.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.5043 0.3156 0.6930

Std deviation 0.7305 0.6192 0.8909

Variance 0.5336 0.3834 0.7938

Table C.98.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 5.3476 Pr > t <0.0001

Table C.98.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7169 Pr < W <0.0001

Figure C.213. Residual normality plot of  
weekday—99th-percentile TTI—Minnesota.

Figure C.212. Residual histogram of weekday— 
99th-percentile TTI—Minnesota.

Figure C.211. Residual plot of weekday— 
99th-percentile TTI—Minnesota.
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Salt Lake City

Table C.99. Residual Analysis of Weekday— 
99th-Percentile TTI—Salt Lake City

Table C.99.a. Basic Statistical Measures

Location Variability

Mean 0.2044 Std deviation 0.1778

Median 0.2447 Variance 0.0316

Minimum -0.261 Range 0.6747

Maximum 0.4139 Interquartile range 0.1944

Table C.99.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2044 0.1380 0.2708

Std deviation 0.1778 0.1416 0.2390

Variance 0.0316 0.0201 0.0571

Table C.99.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.2975 Pr > t <0.0001

Table C.99.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8601 Pr < W 0.0010

Figure C.214. Residual plot of weekday— 
99th-percentile TTI—Salt Lake City.

Figure C.216. Residual normality plot of 
weekday—99th-percentile TTI—Salt Lake City.

Figure C.215. Residual histogram of weekday— 
99th-percentile TTI—Salt Lake City.
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95th-Percentile TTI Model

California

Table C.100. Residual Analysis of 
Weekday—95th-Percentile TTI—California

Table C.100.a. Basic Statistical Measures

Location Variability

Mean 0.2369 Std deviation 0.2444

Median 0.2792 Variance 0.0597

Minimum -0.406 Range 1.4594

Maximum 1.0533 Interquartile range 0.2651

Table C.100.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.2369 0.1963 0.2774

Std deviation 0.2444 0.2189 0.2767

Variance 0.0597 0.0479 0.0766

Table C.100.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 11.549 Pr > t <0.0001

Table C.100.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9378 Pr < W <0.0001

Figure C.217. Residual plot of weekday— 
95th-percentile TTI—California.

Figure C.218. Residual histogram of weekday— 
95th-percentile TTI—California.

Figure C.219. Residual normality plot of  
weekday—95th-percentile TTI—California.
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Minnesota

Table C.101. Residual Analysis of 
Weekday—95th-Percentile TTI—Minnesota

Table C.101.a. Basic Statistical Measures

Location Variability

Mean 0.6993 Std deviation 0.8449

Median 0.5499 Variance 0.7138

Minimum -0.221 Range 4.5969

Maximum 4.3758 Interquartile range 0.4778

Table C.101.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.6993 0.4811 0.9176

Std deviation 0.8449 0.7161 1.0304

Variance 0.7138 0.5128 1.0618

Table C.101.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.4118 Pr > t <0.0001

Table C.101.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6407 Pr < W <0.0001

Figure C.222. Residual normality plot of  
weekday—95th-percentile TTI—Minnesota.

Figure C.221. Residual histogram of weekday— 
95th-percentile TTI—Minnesota.

Figure C.220. Residual plot of weekday— 
95th-percentile TTI—Minnesota.
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Salt Lake City

Table C.102. Residual Analysis of 
Weekday—95th-Percentile TTI— 
Salt Lake City

Table C.102.a. Basic Statistical Measures

Location Variability

Mean 0.1696 Std deviation 0.1185

Median 0.1951 Variance 0.0140

Minimum -0.167 Range 0.5681

Maximum 0.4012 Interquartile range 0.1022

Table C.102.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.1696 0.1254 0.2139

Std deviation 0.1185 0.0944 0.1593

Variance 0.0140 0.0089 0.0254

Table C.102.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 7.8406 Pr > t <0.0001

Table C.102.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.8312 Pr < W 0.0003

Figure C.225. Residual normality plot of  
weekday—95th-percentile TTI—Salt Lake City.

Figure C.224. Residual histogram of weekday— 
95th-percentile TTI—Salt Lake City.

Figure C.223. Residual plot of weekday— 
95th-percentile TTI—Salt Lake City.
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80th-Percentile TTI Model

California

Table C.103. Residual Analysis of 
Weekday—80th-Percentile TTI—California

Table C.103.a. Basic Statistical Measures

Location Variability

Mean 0.0564 Std deviation 0.1267

Median 0.0883 Variance 0.0161

Minimum -0.387 Range 0.7396

Maximum 0.3527 Interquartile range 0.1138

Table C.103.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0564 0.0354 0.0774

Std deviation 0.1267 0.1135 0.1435

Variance 0.0161 0.0129 0.0206

Table C.103.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 5.3045 Pr > t <0.0001

Table C.103.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9180 Pr < W <0.0001

Figure C.226. Residual plot of weekday— 
80th-percentile TTI—California.

Figure C.228. Residual normality plot of  
weekday—80th-percentile TTI—California.

Figure C.227. Residual histogram of weekday— 
80th-percentile TTI—California.
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Minnesota

Table C.104. Residual Analysis of 
Weekday—80th-Percentile TTI—Minnesota

Table C.104.a. Basic Statistical Measures

Location Variability

Mean 0.3134 Std deviation 0.3484

Median 0.2155 Variance 0.1214

Minimum -0.078 Range 1.9074

Maximum 1.8296 Interquartile range 0.1652

Table C.104.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.3134 0.2234 0.4034

Std deviation 0.3484 0.2953 0.4249

Variance 0.1214 0.0872 0.1805

Table C.104.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.9691 Pr > t <0.0001

Table C.104.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6274 Pr < W <0.0001

Figure C.229. Residual plot of weekday— 
80th-percentile TTI—Minnesota.

Figure C.230. Residual histogram of weekday— 
80th-percentile TTI—Minnesota.

Figure C.231. Residual normality plot of  
weekday—80th-percentile TTI—Minnesota.
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Salt Lake City

Table C.105. Residual Analysis of 
Weekday—80th-Percentile TTI—
Salt Lake City

Table C.105.a. Basic Statistical Measures

Location Variability

Mean 0.0432 Std deviation 0.0360

Median 0.0533 Variance 0.0013

Minimum -0.027 Range 0.1305

Maximum 0.1036 Interquartile range 0.0466

Table C.105.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0432 0.0298 0.0567

Std deviation 0.0360 0.0287 0.0485

Variance 0.0013 0.0008 0.0023

Table C.105.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.5668 Pr > t <0.0001

Table C.105.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.9118 Pr < W 0.0165

Figure C.234. Residual normality plot of  
weekday—80th-percentile TTI—Salt Lake City.

Figure C.233. Residual histogram of weekday— 
80th-percentile TTI—Salt Lake City.

Figure C.232. Residual plot of weekday— 
80th-percentile TTI—Salt Lake City.
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50th-Percentile TTI Model

California

Table C.106. Residual Analysis of 
Weekday—50th-Percentile TTI—California

Table C.106.a. Basic Statistical Measures

Location Variability

Mean -0.005 Std deviation 0.0575

Median 0.0152 Variance 0.0033

Minimum -0.399 Range 0.4271

Maximum 0.0282 Interquartile range 0.0247

Table C.106.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.005 -0.015 0.0042

Std deviation 0.0575 0.0515 0.0651

Variance 0.0033 0.0027 0.0042

Table C.106.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -1.099 Pr > t 0.2735

Table C.106.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.4980 Pr < W <0.0001

Figure C.237. Residual normality plot of 
weekday—50th-percentile TTI—California.

Figure C.236. Residual histogram of weekday— 
50th-percentile TTI—California.

Figure C.235. Residual plot of weekday— 
50th-percentile TTI—California.
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Minnesota

Table C.107. Residual Analysis of 
Weekday—50th-Percentile TTI—Minnesota

Table C.107.a. Basic Statistical Measures

Location Variability

Mean 0.0153 Std deviation 0.0074

Median 0.0178 Variance 543E-7

Minimum -0.024 Range 0.0449

Maximum 0.0213 Interquartile range 0.0050

Table C.107.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0153 0.0134 0.0172

Std deviation 0.0074 0.0062 0.0090

Variance 543E-7 39E-6 0.0001

Table C.107.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 16.049 Pr > t <0.0001

Table C.107.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.6674 Pr < W <0.0001

Figure C.238. Residual plot of weekday— 
50th-percentile TTI—Minnesota.

Figure C.240. Residual normality plot of  
weekday—50th-percentile TTI—Minnesota.

Figure C.239. Residual histogram of weekday— 
50th-percentile TTI—Minnesota.
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Salt Lake City

Table C.108. Residual Analysis of 
Weekday—50th-Percentile TTI— 
Salt Lake City

Table C.108.a. Basic Statistical Measures

Location Variability

Mean -0.003 Std deviation 0.0215

Median 0.0102 Variance 0.0005

Minimum -0.047 Range 0.0620

Maximum 0.0152 Interquartile range 0.0282

Table C.108.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.003 -0.011 0.0046

Std deviation 0.0215 0.0171 0.0289

Variance 0.0005 0.0003 0.0008

Table C.108.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -0.865 Pr > t 0.3942

Table C.108.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7669 Pr < W <0.0001

Figure C.241. Residual plot of weekday— 
50th-percentile TTI—Salt Lake City.

Figure C.242. Residual histogram of weekday— 
50th-percentile TTI—Salt Lake City.

Figure C.243. Residual normality plot of  
weekday—50th-percentile TTI—Salt Lake City.
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10th-Percentile TTI Model

California

Table C.109. Residual Analysis of 
Weekday—10th-Percentile TTI—California

Table C.109.a. Basic Statistical Measures

Location Variability

Mean 0.0028 Std deviation 0.0069

Median 0.0045 Variance 478E-7

Minimum -0.062 Range 0.0685

Maximum 0.0066 Interquartile range 0.0013

Table C.109.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0028 0.0016 0.0039

Std deviation 0.0069 0.0062 0.0078

Variance 478E-7 383E-7 0.0001

Table C.109.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 4.7561 Pr > t <0.0001

Table C.109.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.3795 Pr < W <0.0001

Figure C.244. Residual plot of weekday— 
10th-percentile TTI—California.

Figure C.245. Residual histogram of weekday— 
10th-percentile TTI—California.

Figure C.246. Residual normality plot of  
weekday—10th-percentile TTI—California.
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Minnesota

Table C.110. Residual Analysis of 
Weekday—10th-Percentile TTI—Minnesota

Table C.110.a. Basic Statistical Measures

Location Variability

Mean 0.0032 Std deviation 0.0036

Median 0.0041 Variance 13E-6

Minimum -0.014 Range 0.0184

Maximum 0.0049 Interquartile range 0.0006

Table C.110.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0032 0.0023 0.0042

Std deviation 0.0036 0.0031 0.0044

Variance 13E-6 932E-8 193E-7

Table C.110.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t 6.9862 Pr > t <0.0001

Table C.110.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.3382 Pr < W <0.0001

Figure C.249. Residual normality plot of
weekday—10th-percentile TTI—Minnesota.

Figure C.248. Residual histogram of weekday— 
10th-percentile TTI—Minnesota.

Figure C.247. Residual plot of weekday— 
10th-percentile TTI—Minnesota.
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Salt Lake City

Table C.111.d. Tests for Normality

Test Statistic p-Value

Shapiro-Wilk W 0.7251 Pr < W <0.0001

Table C.111. Residual Analysis of 
Weekday—10th-Percentile TTI— 
Salt Lake City

Table C.111.a. Basic Statistical Measures

Location Variability

Mean -0.006 Std deviation 0.0119

Median 0.0023 Variance 0.0001

Minimum -0.031 Range 0.0343

Maximum 0.0034 Interquartile range 0.0208

Table C.111.b. Basic Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.006 -0.010 -0.001

Std deviation 0.0119 0.0095 0.0160

Variance 0.0001 0.0001 0.0003

Table C.111.c. Tests for Location: Mu=0

Test Statistic p-Value

Student’s t t -2.567 Pr > t 0.0157

Figure C.250. Residual plot of weekday— 
10th-percentile TTI—Salt Lake City.

Figure C.252. Residual normality plot of  
weekday—10th-percentile TTI—Salt Lake City.

Figure C.251. Residual histogram of weekday— 
10th-percentile TTI—Salt Lake City.
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Overview

This appendix presents the validation analysis of the L03 
data-poor models. Appendix H of the L03 Report contains 
a set of models that predict the following travel time index 
(TTI) reliability statistics:

•	 95th-, 90th-, and 80th-percentiles
•	 Standard deviation
•	 Percentage of on-time trips relative to space mean speeds of 

50 mph, 45 mph, and 30 mph

In the L03 project, these models were termed “data poor” 
because they enable the prediction of a wide set of reliability 
measures based only on estimates of the mean travel time 
index. The L03 project calibrated these data-poor models using 
data collected in a number of metropolitan areas but it did not 
perform any validation of the final predictive equations. The 
goal of this stage of the L33 project is to quantify the effective-
ness of these models using new data sets collected from around 
the country.

The rest of this appendix is organized as follows. The next 
section presents the validation procedure, including the data 
gathering and the techniques used to measure the effectiveness 
of the L03 data-poor models. The following section presents 
the validation results for each model overall and by region. The 
final section summarizes the conclusions. There is also an 
attachment that contains detailed validation outputs (shown 
in Tables D.23 to D.50 and Figures D.57 to D.140).

Validation Procedure

Models

The seven L03 data-poor models validated in this task are

1. 95th-percentile TTI = 1 + 3.6700 * ln(meanTTI)
2. 90th-percentile TTI = 1 + 2.7809 * ln(meanTTI)

3. 80th-percentile TTI = 1 + 2.1406 * ln(meanTTI)
4. Standard deviation of TTI = 0.71 * (meanTTI - 1)0.56

5. PctTripsOnTime50mph = e(-0.20570*[meanTTI-1])

6. PctTripsOnTime45mph = e(-1.5115*[meanTTI-1])

7. PctTripsOnTime30mph = 0.333 + [0.672/ 
(1 +	e(5.0366*[meanTTI-1.8256]))]

Appendix H of the L03 Report, which contains these models, 
does not include any outputs from the statistical analyses used 
to form these equations. Without these outputs, much of the 
L33 validation had to focus on evaluating the extent to which 
these models adhere to the assumptions required for general-
ized regression.

Data

The data used in the validation were collected from the Los 
Angeles, San Francisco Bay Area, Sacramento, and San Diego 
metropolitan regions (grouped together into a “California” 
data set); Minneapolis–St. Paul, Minnesota; Salt Lake City, 
Utah; and Spokane, Washington. Details about the study seg-
ments, data sets, and data processing techniques are discussed 
in the L33 validation plan. The California, Salt Lake City, and 
Spokane data were collected from the three-year period 
between January 1, 2010, and December 31, 2012. The Min-
nesota data were collected from the three-year period between 
June 1, 2009, and May 31, 2012.

Validation was performed using data collected on week-
days during the midday period (11:00 a.m.–2:00 p.m.) and 
the peak period (a continuous time period of at least 75 min 
during which the space mean speed is less than 45 mph). This 
is consistent with the time periods that L03 used to calibrate 
the data-poor models.

Table D.1 summarizes the sample size of data by region 
and time period used in the validation. Each value represents 
the number of section-years for which the mean TTI and TTI 
reliability statistics were calculated from the collected data. In 
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the validation, the mean TTI was plugged into the model 
equations to calculate the reliability statistics, which were 
then compared to the measured values.

Table D.1 shows that far fewer section-year data points 
were generated for the peak period than for the midday 
period. This is because many segments did not meet the L03 
definition of having a peak period, defined as a time period 
of at least 75 min during which the mean speed is less than 
45 mph. In Spokane, none of the sections met these criteria. 
In Salt Lake City, only three section-years (representing one 
section over 3 years) met these criteria. This reduces the 
regional variation among the validation data sets and sug-
gests that the peak period definition needs to be reevaluated 
in the model enhancement stage. In addition to the lack of a 
notable peak period in the Spokane and Salt Lake City data 
sets, in general, the travel times in these data sets exhibited 
much less variation and unreliability than in the California 
(CA) and Minnesota (MN) sites. This should be kept in mind 
when evaluating the validation results.

D.2.3 Measures

For each model, the goals of the validation were to quantify 
the model error and determine whether the model follows 
the key assumptions of generalized regression. This section 
first describes the assumptions that were tested and then 
presents the performance measures that were evaluated.

D.2.3.1  Generalized Regression 
Model Assumptions

As part of model validation, we examine if the key assump-
tions of generalized regression models are violated. General-
ized regression models have the following basic assumptions:

1. Generalized nonlinear functional form: the following for-
mula states that the conditional mean of yi given xi is a 
continuous differential function f, that is,
(a) E[yi |	xi] = f(xi, b), i = 1, . . . , n
(b) If this assumption is satisfied, the residuals should not 

show any nonrandom pattern (e.g., concave shape) in 
the residual plot. Otherwise, the model form may not 
be adequate.

2. Zero residual mean: the distribution of residuals has a 
mean of zero.

3. Homoscedasticity: the distribution of residuals has a con-
stant variance.

4. Normal distribution of residual: it is assumed that residu-
als follow the normal distribution.

Performance Measures

For a systematic evaluation of the model assumptions, we 
used the performance measures proposed in the L33 valida-
tion plan: (1) root mean square error (RMSE); (2) residual 
plots; and (3) Student’s t-test of zero residual mean. Each of 
these is described below.

Root Mean SquaRe eRRoR

Denote the predicted response values from the model as ŷ and 
the measured response values as y. The prediction error (resid-
ual) r is thus defined as

= −r y yˆ

A positive mean r implies that the model systemically over-
estimates values based on new data. RMSE is defined as

∑( ) ( )= = −  = =RMSE MSE ˆ ˆ 2
2

1y E y y
r

n
i

n

RMSE measures the magnitude of differences between the pre-
dicted and measured responses. However, there is no simple 
benchmark or threshold for an acceptable RMSE.

ReSidual plotS

Ideally, residual r is a random variable that follows a normal 
distribution with zero mean. Plotting out the distribution of 
residuals allows for an assessment of the goodness of fit and 
the likelihood of the presence of bias and heteroscedasticity 
(unequal variance).

Student’S t-teSt of ZeRo ReSidual Mean

The one sample Student’s t-test can be used to determine if 
the mean of the residuals is significantly different from zero 
in a statistical sense, which tests for systematic bias. With an 
unbiased model, the difference should be statistically insig-
nificant. The t-value is calculated as

= − µ
t

r

s n
0

where r– is the residual mean, s is the standard deviation of 
residuals, n is the sample size, and µ0 is the specific mean 

Table D.1. L33 Validation Data Sample Size 
(Section-Years)

Period CA MN Salt Lake City Spokane
All 

Data

Midday 144 60 42 12 258

Peak period 43 19  3  0  65

Total 187 79 45 12 323
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value for comparison, set here to be zero. To draw a conclu-
sion, if the calculated t-value is larger than some threshold ta 
(e.g., a = 5%) using a two-tailed t distribution table, the null 
hypothesis that the residuals have a mean of zero can be 
rejected with (1ta) level of confidence. Or we say that the 
residual mean is significantly different from zero at a level of 
probability. If the corresponding p-value is used to draw a 
conclusion, it means that if the null hypothesis were correct, 
then we would expect to obtain such a large t-value on at 
most p percentage of occasions. For the validation, we use a 
95% level of confidence.

data-Poor Model 
Validation Results

This section contains the data-poor validation results, with 
subsections for each of the seven data-poor models. Each sub-
section is further divided into the following sections: (1) All 
Sites, which presents results aggregated across all regions; 
(2) Region Specific, which details model performance in each 
individual region; and (3) Summary, which includes conclu-
sions on the model validation.

Each All Sites model section includes the following:

•	 A table listing the RMSE values at each study site;
•	 A scatter plot comparing the predicted TTI curve with the 

measured values;
•	 A scatter plot of the residuals by predicted TTI;
•	 A histogram showing the distribution of the residuals;
•	 A quantile-quantile plot (normality plot) of the residuals; 

and
•	 A series of tables showing various statistics about the resid-

uals and the results of the t-test to check if the mean of the 
residuals is statistically different from zero.

Each region-specific section contains a scatter plot com-
paring the predicted TTI curve with the measured values, 
as well as a general discussion on the validation results. The 
outputs listed above are also included for each region in the 
attachment.

Each summary section contains a table listing whether the 
basic regression assumptions are satisfied based on statistical 
results and subjective observations of plots. The judgment is 
concluded in a qualitative way determining the satisfaction 
level of the assumptions, categorized as S (satisfactory) or NS 
(not satisfactory). Four criteria are summarized:

1. Systematic nonlinear trend. It is evaluated as “satisfac-
tory” if the model can describe the validation data trend 
adequately, without some systematic biased pattern shown 
in the residual plot, in which case the residuals should be 
symmetrically distributed on both sides of the zero refer-
ence line in the residual plot.

2. Residual: zero mean. It is evaluated as “satisfactory” if the 
Student’s t-test shows strong confidence (95% level) that 
the null hypothesis of zero residual mean cannot be rejected.

3. Residual: constant variance. It is evaluated as “satisfactory” 
if the distribution of residuals along the zero reference line 
does not show a cone shape or double bow shape.

4. Residual: normal distribution. It is evaluated as “satisfac-
tory” if the residual distribution closely follows a normal 
distribution.

95th-Percentile TTI Model

All Sites

Table D.2 shows the RMSE for the 95th-percentile prediction 
by site. In terms of RMSE, the data-poor 95th-percentile TTI 
model fits the Spokane data the best, with an RMSE of only 
0.0688. The error is highest with the California data set, which 
has an RMSE over 0.2. However, the RMSE criterion alone 
does not tell the whole story. As discussed in the Overview 
section of this appendix, the Spokane data set has very little 
variance compared to that of California. One needs to keep 
this issue in mind when examining the statistical results.

The scatter plot in Figure D.1 shows that the data-poor model 
can generally predict the trend of the 95th-percentile TTI data. 
Nonetheless, the residual plot in Figure D.2 exhibits a clear cone 
shape increasing in range, indicating a nonconstant variance 

Table D.2. RMSE Summary, 95th-Percentile TTI

CA MN Salt Lake City Spokane All Data Sets

0.2064 0.1716 0.0883 0.0688 0.1820

Figure D.1. Mean TTI versus 95th-percentile TTI.
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and suggesting that some data transformation may be needed 
to get a better fit to the data. The histogram in Figure D.3 
and the normality plot in Figure D.4 show that the distribution 
of residuals close to the mean varies less than that for a nor-
mal distribution. The t-test results in Table D.3 show that the 
residual mean is larger than zero, meaning that the model tends 
to predict a higher 95th-percentile TTI than the data show.

Region Specific

califoRnia

The scatter plot of the California data set in Figure D.5 shows 
that the predicted 95th-percentile TTI curve follows a similar 
pattern to that of the measured data points. However, most of 
the residuals are positive, with an increasing error variance as 
the mean TTI increases. This indicates that the model tends to 
overpredict the 95th-percentile travel times in the California 

Figure D.2. Residual plot of the 95th-percentile TTI—
AllData.

Figure D.3. Histogram of residuals—95th-percentile 
TTI—AllData.

Table D.3.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 4.0291 <0.0001

Table D.3. Residual Analysis Results—
95th-percentile TTI—AllData

Table D.3.a. Basic Summary

Location Variability

Mean 0.0399 Std deviation 0.1779

Median 0.0108 Variance 0.0316

Min -0.7684 Range 1.5732

Max 0.8048 Interquartile range 0.0767

Table D.3.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0399 0.0204 0.0593

Std deviation 0.1779 0.1651 0.1927

Variance 0.0316 0.0273 0.0371

Figure D.4. Normality plot of residuals— 
95th-percentile TTI—AllData.
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regions. The t-test results reject the null hypothesis that the 
average of the residuals is zero.

MinneSota

The Minnesota data points are more evenly scattered on both 
sides of the data-poor model curve than were the California 
data points, as we can see from the scatter plot in Figure D.6. 
Analysis of the residuals shows a nonconstant error variance, 
implying that some type of variable transformation may be 
needed. The distribution of residuals is negatively skewed. The 
t-test results reject the null hypothesis that the average of the 
residuals is zero. In general, the model tends to underpredict 
the 95th-percentile travel times in the Minneapolis region.

Salt lake city

The Salt Lake City data samples were mostly collected dur-
ing a noncongested condition, as we can see from the scatter 

plot in Figure D.7. It has only three sparse points whose mean 
TTI is larger than 1.1. When the mean TTI is below 1.1, the 
real data pattern is much more flattened than the predicted 
curve, meaning that the model tends to overpredict the 95th-
percentile travel time when mean conditions are relatively 
uncongested. As a result, there is some nonrandom pattern 
in the residuals when the predicted value is below 1.5. The 
normality analysis indicates less variability among the resid-
uals than that of a normal distribution. The t-test results 
reject the null hypothesis that the average of the residuals 
is zero.

Spokane

The scatter plot of the Spokane results in Figure D.8 shows a 
cone shape, but this may be partly attributable to the scale of 
the plot. All section-years had a mean TTI of less than 1.08, 
which indicates a nearly free-flow condition. The residuals 

Figure D.5. Mean TTI versus 95th-percentile TTI, 
California.

Figure D.6. Mean TTI versus 95th-percentile TTI, 
Minnesota.

Figure D.7. Mean TTI versus 95th-percentile TTI,  
Salt Lake City.

Figure D.8. Mean TTI versus 95th-percentile TTI, 
Spokane.
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show a nonconstant variance, but none of the residuals are 
large. The residuals do not follow a normal distribution. The 
t-test of the zero residual mean gives a p-value of 0.0767, 
which means that we cannot reject the zero mean null hypoth-
esis with a 95% level of confidence.

Summary

From the validation analysis for the 95th-percentile TTI, we 
can conclude that, in general, the existing model can explain 
the variation in the 95th-percentile TTI. However, the model 
does not fit each region’s data set equally well. This may be 
due to the unique traffic flow characteristics of each region, 
which are difficult to generalize into a single model.

The residual analysis showed violations of the basic regres-
sion assumptions. Nonconstant variance of the residuals is 
the common problem in all of the regions. The zero residual 
mean assumption was rejected in all sites except for Spokane, 
with the model tending to overpredict the 95th-percentile 
TTI in California and Salt Lake City, and underpredict it in 
Minnesota. This implies that the nonlinear model form 
assumption may be violated. The Spokane data set exhibited 
the minimum RMSE among the four regional data sets. How-
ever, the sample size and variability of this data set are not 
large enough to draw confident statistical conclusions.

Table D.4 lists a summary of whether the generalized regres-
sion assumptions are satisfied (S) or not (NS). As mentioned 
in the beginning of this section, the conclusions are based on 
subjective observation of the plots as well as objective statistical 
analysis. The standards for the conclusions in the table are dis-
cussed in the previous section.

90th-Percentile TTI Model

All Sites

The RMSE table in Table D.5 shows that the 90th-percentile 
TTI model predicts consistently better than the 95th-percentile 
TTI for all four regional data sets. The largest RMSE shows up 

in the validation of the Minnesota data set, followed by that of 
the California data set. The largest RMSE is 0.15023. Overall, 
RMSE is 0.11890, close to that of the California data set, which 
may be because the dominant samples are coming from the 
California data set.

The scatter plot in Figure D.9 and the residual plot in Fig-
ure D.10 clearly show that the data-poor model is unable to 
fully capture the data trend, resulting in a concave shape in 
the residual plot. The histogram in Figure D.11 and the 

Table D.4. 95th-Percentile of TTI Model 
Validation Summary

Assumptions: All CA MN
Salt Lake 

City Spokane

Systematic nonlinear 
trend

NS NS S NS S

Residual: zero mean NS NS NS NS S

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS

Note: NS = generalized regression assumptions are not satisfied; S = satisfied.

Table D.5. RMSE Summary, 90th-Percentile TTI

CA MN Salt Lake City Spokane All Data Sets

0.1187 0.1502 0.0483 0.0604 0.1189

Figure D.9. Mean TTI versus 90th-percentile TTI.

Figure D.10. Residual plot—90th-percentile TTI— 
AllData.
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normality plot in Figure D.12 indicate that the residual distri-
bution has less variance compared with a normal distribu-
tion. The 95% confidence interval of estimated residual mean 
does not include zero, and the t-test yields a p-value of 
0.0233 (Table D.6), indicating that the hypothesis of zero 
residual mean can be rejected.

Region Specific

califoRnia

The California data samples fall around the predicted curve 
but tend to be smaller (Figure D.13). Residual analysis 

Figure D.11. Histogram of residuals.

Table D.6.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 2.2790 0.0233

Table D.6. Statistical Residual Analysis 
Results—90th-percentile TTI—AllData

Table D.6.a. Basic Summary

Location Variability

Mean 0.0150 Std deviation 0.1181

Median 0.0118 Variance 0.0140

Min -0.6737 Range 1.0585

Max 0.3848 Interquartile range 0.0503

Table D.6.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0150 0.0020 0.0279

Std deviation 0.1181 0.1097 0.1280

Variance 0.0140 0.0120 0.0164

Figure D.12. Normality plot of residuals— 
90th-percentile TTI—AllData.

Figure D.13. Mean TTI versus 90th-percentile TTI, 
California.
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confirms that most of the residuals are above the zero refer-
ence line, with a positive skew in the residual distribution. 
The estimated residual mean is 0.0358 with an estimated con-
fidence interval of 0.0194 to 0.0522. The t-test rejects the zero 
residual mean hypothesis. Note that there is a potential out-
lier resulting in the maximal absolute residual value of 0.6737. 
However, since we do not have enough evidence to conclude 
that it should be removed from the data set, it is included in 
the validation analysis.

MinneSota

Unlike in California, in Minnesota the measured 90th- 
percentile TTI increases faster with the mean TTI than does the 
prediction. Like the 95th-percentile model, the 90th-percentile 
model in Minnesota tends to underpredict the measured 
95th-percentile TTI (Figure D.14). The variance among the 
residuals is nonconstant, with the absolute value of the resid-
ual reaching its maximum as the predicted value reaches its 
maximum. The distribution of the residuals is negatively 
skewed compared with a normal distribution. The t-test results 
reject the zero residual mean hypothesis.

Salt lake city

The Salt Lake City data set shows similar results to those in 
the 95th-percentile TTI model validation. In the area around 
the origin when the mean TTI is below 1.1, the measured data 
consistently fall below the predicted curve, as is shown in the 
scatter plot (Figure D.15) and the residual plot in the attach-
ment (Figure D.75). The t-test results reject the zero residual 
mean null hypothesis.

Spokane

This 90th-percentile TTI data-poor model does not fit the 
Spokane data set very well, as shown in the scatter plot 

(Figure D.16). However, since the data has relatively little 
variance, the absolute values of the residuals are small, with a 
maximum of 0.1118. The main problem with this model fit is 
that the residuals increase almost linearly with the predicted 
value. The distribution of the residuals is positively skewed 
and not normally distributed. The t-test results reject the zero 
residual mean null hypothesis.

Summary

The L03 90th-percentile TTI data-poor model generally fits 
the data better than the 95th-percentile model does, as shown 
by the lower RMSE values. This is probably due to the fact 
that the 90th-percentile TTI validation data has less overall 
variance than the 95th-percentile TTI data. The 90th-percentile 
TTI model tends to overpredict the 90th-percentile TTI in 

Figure D.14. Mean TTI versus 90th-percentile TTI, 
Minnesota.

Figure D.15. Mean TTI versus 90th-percentile TTI, 
Salt Lake City.

Figure D.16. Mean TTI versus 90th-percentile TTI, 
Spokane.
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the California, Salt Lake City, and Spokane data sets and 
underestimate it in the Minnesota data. Residual analysis 
indicates violation of the basic normality, zero error mean, 
and constant error variance assumptions (summarized in 
Table D.7 with all “not satisfactory” assessments).

80th-Percentile TTI Model

All Sites

The RMSE values for the 80th-percentile TTI model, shown in 
Table D.8, are even smaller than those for the 90th-percentile 
TTI model. This is probably due to the fact that the 80th-
percentile TTI validation data set has less variance. For each 
of the five data sets, RMSE is less than 0.1, which means that 
the mean 80th-percentile travel time prediction error is less 
than 10% of the corresponding free-flow travel time. In this 
sense, the model performs satisfactorily. However, we need 
more complicated validation analysis to see if the regression 
assumptions are satisfied.

The scatter plot (Figure D.17) and the residual plot (Fig-
ure D.18) clearly show that the data-poor model for the 
80th-percentile TTI is unable to capture the trend of the 
response variable. In fact, the scattered data samples show 
a linear or convex shape, but the data-poor model shows a 
concave-like shape, resulting in concavely scattered resid-
ual points in the residual plot. The histogram (Figure D.19) 
and the normality plot (Figure D.20) both show that the 
residual distribution does not perfectly follow a normal 
distribution. The Student’s t-test yields a p-value less than 
0.0001, implying that we can reject the zero mean hypothesis 
(Table D.9).

Table D.7. 90th-Percentile of TTI Model 
Validation Summary

Assumptions: All CA MN
Salt Lake 

City Spokane

Systematic nonlinear 
trend

NS NS NS NS NS

Residual: zero mean NS NS NS NS NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS

Note: NS = generalized regression assumptions are not satisfied.

Table D.8. RMSE Summary, 80th-Percentile TTI

CA MN Salt Lake City Spokane All Data Sets

0.0660 0.0896 0.0290 0.0447 0.0684

Figure D.17. Mean TTI versus 80th-percentile TTI.

Figure D.18. Residual plot—80th-percentile  
TTI—AllData.

Figure D.19. Histogram of residuals— 
80th-percentile TTI—AllData.
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Region Specific

califoRnia

The scatter plot of California data samples shows an initial 
tendency to fall below the predicted curve until the mean TTI 
exceeds 1.7, at which point the data samples tend to be above 
the predicted curve (Figure D.21). This obviously shows that 
the data-poor model fails to capture part of the variability 
in the response variable. The residual analysis shows non-
constant variance and a positively skewed distribution. The 
t-test results reject the zero residual mean hypothesis.

MinneSota

As in California, the 80th-percentile TTI data-poor model 
fails to sufficiently capture the measured data trend, espe-
cially when the mean TTI is beyond 1.5. In fact, the predicted 
curve shows a concave shape while the real data show a slight 
convex shape (Figure D.22). The nonconstant error variance 
problem also exists. The residuals are negatively skewed, just 
like for the 90th and 95th-percentile models in Minnesota. 
However, the t-test results show a p-value of 0.5049, meaning 
that we cannot reject the null hypothesis of zero mean.

Salt lake city

The Salt Lake City data points all fall below the predicted line 
(Figure D.23), but the residuals are all very small (less than 
0.1), meaning that the predicted values are very close to the 
true values. However, the residual distribution does not 
closely follow a normal distribution. The t-test results reject 
the zero residual mean null hypothesis.

Spokane

In the scatter plot for the Spokane results, sample points largely 
fall below the predicted line (Figure D.24), indicating that the 
model overestimates the 80th-percentile TTI. In addition, this 

Table D.9. Statistical Residual Analysis 
Results—80th-percentile TTI—AllData

Table D.9.a. Basic Summary

Location Variability

Mean 0.0184 Std deviation 0.0660

Median 0.0135 Variance 0.0044

Min -0.3750 Range 0.6014

Max 0.2263 Interquartile range 0.0379

Table D.9.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 5.0051 <0.0001

Table D.9.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0184 0.0111 0.0256

Std deviation 0.0660 0.0612 0.0715

Variance 0.0043 0.0037 0.0051

Figure D.20. Normality plot of residuals— 
80th-percentile TTI—AllData.

Figure D.21. Mean TTI versus 80th-percentile TTI, 
California.
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overestimation tends to increase as the mean TTI increases, 
meaning that the residuals are positively correlated with the 
predicted values. The residuals are not normally distributed. 
The t-test results reject the zero residual mean null hypothesis.

Summary

Although the RMSE table shows that the average prediction 
error is within 10% of TTI, the validation analysis for the 
80th-percentile TTI data-poor model shows that the lack of 
fit is obvious for all four data sets. Specifically, the model fails 
to capture the correct curvature of the California data and 
Minnesota data and tends to overestimate the 80th-percentile 
TTI for the Salt Lake City and Spokane data sets. Essentially 
they are the same problem, since the last two data sets have less 
variance and thus only represent the area with low mean TTIs. 
Nonnormally distributed residual, nonzero residual mean, 
and nonconstant error variance problems were all shown in 
the validation analysis (Table D.10), but the primary concern is 
the lack of fit for the curvature.

Standard Deviation of TTI Model

Overview

Table D.11 summarizes the RMSE for the data-poor standard 
deviation (std) of the TTI model. The magnitude of these 
values is not large since the standard deviation of TTI data 
itself has a small magnitude, mostly less than 1.1. The highest 
RMSE is in Minnesota while the lowest is in Salt Lake City.

The scatter plot (Figure D.25) and the residual plot (Fig-
ure D.26) together show that the model has lack of fit problems. 

Figure D.22. 80th-percentile TTI versus mean TTI.

Figure D.23. 80th-percentile TTI versus mean TTI, 
Salt Lake City.

Figure D.24. 80th-percentile TTI versus mean TTI, 
Spokane.

Table D.10. 80th-Percentile of TTI Model 
Validation Summary

Assumptions: All CA MN
Salt Lake 

City Spokane

Systematic nonlinear 
trend

NS NS NS NS NS

Residual: zero mean NS NS S NS NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS

Note: NS = generalized regression assumptions are not satisfied; S = satisfied.

Table D.11. RMSE Summary, Standard  
Deviation of TTI

CA MN Salt Lake City Spokane All Data Sets

0.0839 0.1028 0.0586 0.0672 0.0855
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The measured standard deviation increases faster than the 
predicted standard deviation. The histogram (Figure D.27) 
and the normality plot (Figure D.28) both indicate that the 
residual distribution approximately follows a normal curve, 
although a negative skew exists. In Table D.12, a p-value of 
0.0430 in the Student’s t-test demonstrates that the residual 
distribution does not have a zero mean.

Region Specific

califoRnia

The scatter plot of the California data set in Figure D.29 shows 
that most data points fall near the predicted curve. However, the 
shapes of the scattered points and the predicted line do not 

match very well; the predicted line initially tends to overesti-
mate the standard deviation of TTI and then under estimates 
it at high mean TTIs. The residuals indicate non constant vari-
ance and a lack of fit problem. The residual distribution is 
close to normal, with a small positive skew. The t-test results 
reject the null hypothesis that the residual mean is zero.

MinneSota

The problem of lack of fit is obvious in the Minnesota data 
scatter plot. The model line fails to follow the upward trend in 
the measured data set, instead gradually flattening as the mean 
TTI increases (Figure D.30). The residual analysis confirms this 
problem and shows that the residual variance is non constant. 

Figure D.25. Standard deviation TTI versus 
mean TTI.

Figure D.26. Residual plot—standard deviation  
of TTI—AllData.

Figure D.27. Histogram of residuals—standard 
deviation of TTI—AllData.

Figure D.28. Normality plot of residuals—standard 
deviation of TTI—AllData.
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(Figure D.31). The residual analysis shows the nonconstant 
variance problem. The t-test has a p-value of 0.0907, meaning 
that we cannot reject the null hypothesis that the residual 
mean is zero.

Spokane

The mean TTI in the Spokane data spreads from 1.0 to 1.08. 
Thus the data has very little variance and is collected all in 
near free-flow conditions. Figure D.32 shows that only two 
data points fall to the left of the data-poor model curve 
while all other 10 points fall to the right of that curve. The 
residuals are scattered in an unbalanced way and have non-
constant variance. The distribution of residuals does not 
closely follow a normal distribution. The t-test results show 
that we can reject the null hypothesis that the residual mean 
is zero.

Table D.12. Statistical Residual Analysis 
Results—standard deviation of TTI

Table D.12.a. Basic Summary

Location Variability

Mean 0.0096 Std deviation 0.0850

Median 0.0110 Variance 0.0072

Min -0.4453 Range 0.7044

Max 0.2590 Interquartile range 0.0626

Table D.12.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0096 0.0003 0.0189

Std deviation 0.0851 0.0790 0.0922

Variance 0.0072 0.0062 0.0085

Table D.12.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-Test 2.0322 0.0430

Figure D.29. Standard deviation TTI versus mean TTI, 
California.

Figure D.30. Standard deviation TTI versus mean 
TTI, Minnesota.

Figure D.31. Standard deviation TTI versus mean TTI, 
Salt Lake City.

The distribution of residuals is negatively skewed. The t-test 
results reject the null hypothesis of zero residual mean.

Salt lake city

The standard deviation of a TTI data-poor model largely 
predicts the trend in the measured Salt Lake City data 
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Summary

Overall, nonconstant variance is a problem for all data sets, 
and the nonzero residual mean is a problem for all data sets 
except for Salt Lake City. The California data set presents rela-
tively good residual distributions that closely follow a normal 
distribution. Overall, though, we conclude that the standard 
deviation of TTI model does not adequately capture the mea-
sured data pattern. Table D.13 summarizes the validation 
results for this model based on subjective observation and 
objective statistical analysis.

Percentage of On-Time Trips with  
Over 50 mph Mean Speed

All Sites

Let “PctTripsOnTime50mph” denote a short name for “per-
centage of on-time trips with over 50 mph mean speed.”  

Similarly, in the next two sections, “PctTripsOnTime45mph” 
and “PctTripsOnTime30mph” are used for mean speed 
thresholds of 45 mph and 30 mph, respectively. The RMSE 
table for PctTripsOnTime50mph shows that the smallest 
RMSE comes from the Salt Lake City data, while the largest 
comes from the California data (Table D.14). However, all 
RMSE values are less than 0.1, or 10% of the number of all 
trips, which indicates good model performance.

The scatter plot (Figure D.33) shows that the data-poor 
model can generally predict the trend of PctTripsOnTime 
50mph. However, the residual plot (Figure D.34) shows a 
clear non random pattern when mean TTI is around 1.0, indi-
cating that the model may be improved by some form of data 
transformation. The histogram (Figure D.35) and the nor-
mality plot (Figure D.36) both show that the residual distri-
bution displays an almost perfect normal distribution shape 
when the residual is less than zero but differentiates from 
the normal distribution reference line when the residual is 
larger than zero. It is also shown that more samples have 
negative residuals than have positive residuals. The t-test 
results in Table D.15 demonstrate that the null hypothesis 
of the zero residual mean can be rejected with a 95% level 

Figure D.32. Standard deviation TTI versus mean TTI, 
Spokane.

Table D.13. Standard Deviation of TTI Model 
Validation Summary

Assumptions: All CA MN
Salt Lake 

City Spokane

Systematic nonlinear 
trend

NS NS NS S NS

Residual: zero mean NS NS NS S NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

S S NS NS NS

Note: NS = generalized regression assumptions are not satisfied; S = satisfied.

Table D.14. RMSE Summary, PctTripsOnTime50mph

CA MN Salt Lake City Spokane All Data Sets

0.0891 0.0617 0.0552 0.0721 0.0784

Figure D.33. PctTripsOnTime50mph versus 
mean TTI.
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Figure D.34. Residual plot—PctTripsOnTime50mph— 
AllData.

Figure D.35. Histogram of residuals— 
PctTripsOnTime50mph—AllData.

of confidence since the p-value is less than 0.0001. Overall, 
the model performs satisfyingly to some extent but leaves 
room for improvement.

Region Specific

califoRnia

The PctTripsOnTime50mph data-poor model tends to 
underestimate the response variable in California when the 
mean TTI is close to 1.0 (uncongested conditions). How-
ever, when the mean TTI becomes larger than 1.4, the data-
poor model tends to overestimate the response variable 

Figure D.36. Normality plot of residuals— 
PctTripsOnTime50mph—AllData.

Table D.15. Statistical Residual Analysis 
Results—PctTripsOnTime50mph—
AllData

Table D.15.a. Basic Summary

Location Variability

Mean -0.0221 Std deviation 0.0754

Median -0.0172 Variance 0.0057

Min -0.2374 Range 0.6062

Max 0.3687 Interquartile range 0.0565

Table D.15.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0221 -0.0303 -0.0138

Std deviation 0.0754 0.0700 0.0817

Variance 0.0057 0.0049 0.0067

Table D.15.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-Test -5.2626 <0.0001
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(Figure D.37). The residuals show nonconstant variance. 
The residual distribution approximately follows a normal 
distribution but with a positive skew. The t-test results show 
that evidence is not sufficient to reject the null hypothesis of 
zero residual mean.

MinneSota

In the Minnesota data validation, the data-poor model tends 
to consistently underestimate the response variable, as shown 
in Figure D.38. The nonconstant variance problem exists in 
this data set. The residuals do not closely follow a normal 
distribution and have a slight negative skew. The t-test results 
show strong evidence to reject the null hypothesis of zero 
residual mean.

Salt lake city

The data-poor model fails to capture the Salt Lake City data 
pattern when the mean TTI is below 1.1, as shown in the scatter 
plot (Figure D.39). The nonconstant variance problem still 
exists, but the primary concern is the inability to predict the 
measured data trend. The distribution of residuals does not 
closely follow a normal distribution and is negatively skewed. 
The t-test results reject the zero residual mean hypothesis.

Spokane

The Spokane measured data all fall above the data-poor model 
line (Figure D.40). There is a positive correlation between the 
residuals and the predicted values. The residuals are not 
normally distributed but rather appear uniformly distributed. 

Figure D.37. PctTripsOnTime50mph versus mean TTI, 
California.

Figure D.38. PctTripsOnTime50mph versus mean TTI, 
Minnesota.

Figure D.39. PctTripsOnTime50mph versus mean TTI, 
Salt Lake City.

Figure D.40. PctTripsOnTime50mph versus mean TTI, 
Spokane.
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The t-test results show sufficient evidence to reject the zero 
residual mean hypothesis.

Summary

The PctTripsOnTime50mph data-poor model can largely pre-
dict the data trend of the measured validation data sets but 
tends to underestimate PctTripsOnTime50mph, especially 
when the mean TTI is small. The RMSE values are all below 
0.1, indicating an average prediction error of less than 10% of 
the total number of trips. The California data has a weak indi-
cation of zero residual mean, but other data sets all show strong 
evidence of violating this assumption. The residual plots show 
that there is some uncaptured pattern in the data sets. The 
constant variance assumption cannot be satisfied in any data 
set; neither can the normal residual distribution assumption. 
Table D.16 summarizes these conclusions in a qualitative way.

Percentage of On-Time Trips with 
Over 45 mph Mean Speed

All Sites

The PctTripsOnTime45mph model validation results show 
that all the RMSE values are between 4% and 7%, which is an 
indication of relatively good performance (Table D.17). The 
scatter plot demonstrates that the data-poor model can 
largely predict the trend of the validation data, but it tends to 
underestimate the response when the mean TTI is below 1.1 
(Figure D.41). A corresponding pattern along with an indi-
cation of nonconstant variance can be found in the residual 
plot (Figure D.42). The histogram (Figure D.43) and the 
normality plot (Figure D.44) both show that the residual 

Table D.16. PctTripsOnTime50mph Model 
Validation Summary

Assumptions: All CA MN Salt Lake Spokane

Systematic nonlinear 
trend

NS NS NS NS NS

Residual: zero mean NS S NS NS NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS

Note: NS = generalized regression assumptions are not satisfied; S = satisfied.

Table D.17. RMSE Summary, PctTripsOnTime45mph

CA MN Salt Lake City Spokane All Data Sets

0.0681 0.0480 0.0433 0.0553 0.0602

Figure D.41. PctTripsOnTime45mph versus 
mean TTI.

Figure D.42. Residual plot— 
PctTripsOnTime45mph—AllData.

Figure D.43. Histogram of residuals— 
PctTripsOnTime45mph—AllData.
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distribution closely follows a normal distribution when the 
residual is less than zero but is skewed when the residual is 
larger than zero. The Student’s t-test yields a p-value less than 
0.0001, indicating that the null hypothesis can be rejected at 
a 95% level of confidence, as shown in Table D.18.

Region Specific

califoRnia

The data-poor model predicts a curve that generally approxi-
mates the measured trend. However, it tends to under estimate 
the response variable when the mean TTI is smaller than 1.1 
while overestimating when the mean TTI is larger than 1.4 
(Figure D.45). The residuals closely follow a normal distribu-
tion when the residuals are negative but are skewed when the 
residuals are positive. The t-test results imply that the zero 
mean residual assumption can be rejected.

MinneSota

The scatter plot (Figure D.46) and the residual analysis indicate 
that the data-poor model can predict the general pattern of the 
Minnesota data but tend to underestimate the response vari-
able. The nonconstant variance problem also exists. The resid-
uals do not appear to be normally distributed. The t-test shows 
strong evidence to reject the zero residual mean hypothesis.

Salt lake city

The data-poor model tends to underestimate the response 
variable in the Salt Lake City validation data (Figure D.47). 
The nonconstant residual variance is evident, but the inade-
quate model trend problem is the primary concern. The resid-
ual distribution does not closely follow a normal distribution. 

Figure D.44. Normality plot of residuals— 
PctTripsOnTime45mph—AllData.

Table D.18. Statistical Residual Analysis 
Results—PctTripsOnTime45mph—
AllData

Table D.18.a. Basic Summary

Location Variability

Mean -0.0196 Std deviation 0.0570

Median -0.0156 Variance 0.0033

Min -0.1877 Range 0.4463

Max 0.2587 Interquartile range 0.0438

Table D.18.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0196 -0.0258 -0.0133

Std deviation 0.0570 0.0530 0.0618

Variance 0.0033 0.0028 0.0038

Table D.18.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -6.1626 <0.0001

Figure D.45. PctTripsOnTime45mph versus  
mean TTI, California.

The t-test results indicate that we can reject the zero residual 
mean assumption.

Spokane

In the Spokane scatter plot (Figure D.48), sample points all fall 
above the data-poor model curve. As the mean TTI increases, 
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the measured PctTripsOnTime45mph decreases much more 
slowly than the predicted curve. The residuals are positively 
correlated with the predicted value, which implies lack of fit. 
Because the Spokane data have little variance, the prediction 
error is in fact not large. The residuals appear to be uniformly, 
rather than normally, distributed. The t-test results indicate 
that we can reject the zero residual mean assumption.

Summary

The PctTripsOnTime45mph data-poor model can predict 
the general trend of the validation data sets. However, evi-
dence suggests that the models violate basic regression 
assumptions, meaning that the model has room for improve-
ment. Specifically, the model tends to underestimate when 
mean TTI is small, which indicates lack of fit. Note that all 
residual means are negative. The constant residual variance 
assumption is found to be violated through examining the 
residual plot. Normal distribution of residuals and zero resid-
ual mean assumptions cannot be satisfied either.

Table D.19 summarizes the performance evaluation results 
qualitatively.

Percentage of On-Time Trips with  
Over 30 mph Mean Speed

All Sites

The PctTripsOnTime30mph data-poor model predicts the four 
validation data sets with a maximum RMSE of 0.0329, indicat-
ing good performance (Table D.20). The model largely captures 
the data trend (Figure D.49), and the residual plot (Figure D.50) 
shows a much better pattern than that in the previous two sec-
tions. However, a potential lack of fit is evidenced by the 

Figure D.46. PctTripsOnTime45mph versus mean TTI, 
Minnesota.

Figure D.47. PctTripsOnTime45mph versus mean TTI, 
Salt Lake City.

Figure D.48. PctTripsOnTime45mph versus mean TTI, 
Spokane.

Table D.19. PctTripsOnTime45mph Model 
Validation Summary

Assumptions: All CA MN Salt Lake Spokane

Systematic nonlinear 
trend

NS NS NS NS NS

Residual: zero mean NS NS NS NS NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS

Note: NS = generalized regression assumptions are not satisfied.

Table D.20. RMSE Summary, PctTripsOnTime30mph

CA MN Salt Lake City Spokane All Data Sets

0.0247 0.0329 0.0134 0.00674 0.0254
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concave-like shape. A nonconstant variance problem is also 
indicated by the cone shape in the residual plot. The histogram 
and the normality plot (Figure D.51 and Figure D.52) show that 
the residual distribution has much less variance than that of a 
normal distribution but the residual mean is highly likely to be 
zero. The Student’s t-test demonstrates this zero residual mean 
assumption with a p-value of 0.6689 (Table D.21).

Region Specific

califoRnia

The scatter plot of California data shows that the data-poor 
model closely predicts the measured data trend (Figure D.53). 
However, it is also clear that the model can still be improved 

Figure D.49. PctTripsOnTime30mph versus 
mean TTI.

Figure D.50. Residual plot— 
PctTripsOnTime30mph—AllData.

Figure D.51. Histogram of residuals— 
PctTripsOnTime30mph—AllData.

since the model tends to underestimate the response variable 
when the mean TTI is below 1.6 and to overestimate it when 
the mean TTI is above 1.6. The residual analysis indicates lack 
of fit and nonconstant variance. The residuals do not appear 
to be normally distributed. The t-test results show that the 
null hypothesis of zero residual mean cannot be rejected.

MinneSota

The scatter plot of Minnesota data also shows that this data-
poor model generally follows the measured data trend but 
is obviously not adequate (Figure D.54). The residual plot 
included in the attachment shows a concave pattern, indi-
cating some lack of fit. The nonconstant variance problem 

Figure D.52. Normality plot of residuals— 
PctTripsOnTime30mph—AllData.
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Table D.21. Statistical Residual Analysis 
Results—PctTripsOnTime30mph—
AllData

Table D.21.a. Basic Summary

Location Variability

Mean -0.0006 Std deviation 0.0254

Median -0.0055 Variance 0.0006

Min -0.1103 Range 0.2336

Max 0.1233 Interquartile range 0.0021

Table D.21.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0006 -0.0034 0.0022

Std deviation 0.0254 0.0236 0.0275

Variance 0.0006 0.0006 0.0008

Table D.21.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -0.4281 0.6689

Figure D.53. PctTripsOnTime30mph versus mean TTI, 
California.

Figure D.54. PctTripsOnTime30mph versus mean TTI, 
Minnesota.

Figure D.55. PctTripsOnTime30mph versus mean TTI, 
Salt Lake City.

may also exist. The t-test cannot reject the null hypothesis of 
zero residual mean.

Salt lake city

The scatter plot of the Salt Lake City data set shows that the 
data-poor model follows the measured data but tends to 

underestimate the response variable when the mean TTI is 
small, while overestimating it when the mean TTI is large (Fig-
ure D.55). The residuals do not appear to be normally distrib-
uted. The t-test results indicate that we cannot reject the zero 
residual mean null hypothesis.

Spokane

The scatter plot of the Spokane data shows that the data-poor 
model tends to underpredict the measured values (Figure D.56). 
The residuals do not appear to be normally distributed. The 
t-test results indicate that we can reject the zero residual mean 
hypothesis.

Summary

This PctTripsOnTime30mph data-poor model can largely pre-
dict the measured data trend but not with adequate fit. All but 
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the Spokane data satisfy the zero residual mean assumption. 
The normal-distributed residual assumption and the constant 
residual variance assumption are not satisfied in any regional 
data set. Potential improvements should address the slight con-
cave pattern shown in the residual plot. Table D.22 summarizes 
the model validation results for the PctTripsOnTime30mph 
model.

Conclusions

The validation of the L03 data-poor models was performed 
on four regional data sets (California, Minnesota, Salt Lake 
City, and Spokane), as well as on the combined data sets over-
all. The main conclusion is that, while the average prediction 
error (measured by the RMSE) of each model is generally 
acceptable across the regions, the models violate many of the 
assumptions of generalized regression and thus have room 
for enhancement.

Most of the models in nearly all of the regions violate the 
zero residual mean assumption, meaning that the models 
tend to either systematically overpredict the reliability mea-
sure (i.e., indicate that a section is less reliable than it actually 
is) or underpredict the reliability measure (i.e., indicate that 
a section is more reliable than it actually is). Interestingly, this 
systematic bias appears to vary regionally, with the models 
tending to underpredict the reliability measures in Minne-
sota and overpredict them in California. This lends support 
for building regional models rather than cross-sectional 
models, although insufficient data are an obstacle to regional 
modeling.

Additionally, most of the models in most of the regions vio-
late the assumption of constant variance of the residuals. In 
just about all cases, the variance of the residuals increases with 
the mean TTI. This makes intuitive sense, as higher levels of 
baseline, recurrent congestion lead to more unreliable and 
unpredictable conditions. The models also tend to violate the 
assumptions that the residuals are normally distributed and 
that the model form can adequately predict the data trend. 
These problems all indicate that the data-poor model perfor-
mance can be improved.

Another conclusion is that the model error is larger for the 
prediction of higher moments of the TTI distribution (i.e., 
the RMSEs are larger for the 95th-percentile model than for 
the 90th and 80th-percentile models). This makes sense 
because the 95th-percentile TTI is likely associated with very 
rare events (like a major incident or bad weather). We would 
thus expect these TTIs to vary greatly from section to section, 
making them harder to accurately model based solely on the 
mean TTI.

In interpreting these results and conclusions, it is important 
to understand how they are affected by the validation data set 
characteristics. Eighty percent of the section-year data included 
in this validation effort were collected during the weekday 
midday period, where mean TTIs were heavily clustered 
around 1. The RMSEs for this mean TTI area were very low, 
since section time periods that operate in free-flow conditions 
are relatively reliable. As illustrated by the consistent violation 
of the constant variance of residuals assumptions, the model 
error is much higher for larger mean TTIs, and these are the 
conditions under which systematic bias in the prediction is 
most evident. Unfortunately, due to the stringent definition of 
a peak period used in L03, very little of the Salt Lake City and 
Spokane data were able to contribute to this congested regime 
analysis, so we were only able to observe the model response to 
mean congested conditions at two sites (technically, the Cali-
fornia data represent four regions). In the model enhancement 
phase, the research team hopes to loosen the peak period defi-
nition to be able to consider and evaluate more of the Salt Lake 
City and Spokane congestion.

Figure D.56. PctTripsOnTime30mph versus mean TTI, 
Spokane.

Table D.22. PctTripsOnTime30mph Model 
Validation Summary

Assumptions: All CA MN
Salt Lake 

City Spokane

Systematic nonlinear 
trend

NS NS NS NS NS

Residual: zero mean S S S S NS

Residual: constant 
variance

NS NS NS NS NS

Residual: normal 
distribution

NS NS NS NS NS
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Appendix D Attachment

95th-Percentile TTi Model

California

Figure D.57. Residual plot—95th-percentile TTI—
California.

Figure D.58. Residual histogram—95th-percentile 
TTI—California.

Figure D.59. Residual normality plot—95th-percentile 
TTI—California.

Table D.23. Residual Analysis— 
95th-Percentile TTI—California

Table D.23.a. Basic Summary

Location Variability

Mean 0.0799 Std deviation 0.1908

Median 0.0214 Variance 0.0364

Min -0.7684 Range 1.5732

Max 0.8048 Interquartile range 0.1181

(continued on next page)



Minnesota

Table D.23. Residual Analysis— 
95th-Percentile TTI—California 
(continued)

Table D.23.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0799 0.0524 0.1074

Std deviation 0.1908 0.1732 0.2124

Variance 0.0364 0.0300 0.0451

Table D.23.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 5.7275 <0.0001

Figure D.60. Residual plot—95th-percentile TTI—
Minnesota.

Figure D.61. Residual histogram—95th-percentile 
TTI—Minnesota.

Table D.24. Residual Analysis— 
95th-percentile TTI—Minnesota

Table D.24.a. Basic Summary

Location Variability

Mean -0.0474 Std deviation 0.1660

Median -0.0016 Variance 0.0276

Min -0.6480 Range 1.0239

Max 0.3760 Interquartile range 0.0618

Table D.24.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0473 -0.0845 -0.0102

Std deviation 0.1660 0.1435 0.1968

Variance 0.0276 0.0206 0.0387

Table D.24.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -2.5351 0.0132

Figure D.62. Residual normality plot—95th-percentile 
TTI—Minnesota.
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Salt Lake City

Figure D.63. Residual plot—95th-percentile TTI—Salt 
Lake City.

Figure D.64. Residual histogram—95th-percentile 
TTI—Salt Lake City.

Figure D.65. Residual normality plot—95th-percentile 
TTI—Salt Lake City.

Table D.25. Residual Analysis— 
95th-Percentile TTI—Salt Lake City

Table D.25.a. Basic Summary

Location Variability

Mean 0.0279 Std deviation 0.0848

Median 0.0063 Variance 0.0072

Min -0.2786 Range 0.6060

Max 0.3274 Interquartile range 0.0482

Table D.25.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0279 0.0025 0.0534

Std deviation 0.0848 0.0702 0.1071

Variance 0.0072 0.0049 0.0115

Table D.25.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 2.2096 0.0324
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Spokane

Figure D.66. Residual plot—95th-percentile TTI—
Spokane.

Figure D.67. Residual histogram—95th-percentile 
TTI—Spokane.

Table D.26. Residual Analysis— 
95th-Percentile TTI—Spokane

Table D.26.a. Basic Summary

Location Variability

Mean 0.0349 Std deviation 0.0620

Median 0.0309 Variance 0.0038

Min -0.0667 Range 0.1806

Max 0.1139 Interquartile range 0.1072

Table D.26.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0349 -0.0044 0.0743

Std deviation 0.0620 0.0439 0.1052

Variance 0.0038 0.0019 0.0111

Table D.26.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 1.9534 0.0767

Figure D.68. Residual normality plot—95th-percentile 
TTI—Spokane.
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90th-Percentile TTi Model

California

Table D.27. Residual Analysis— 
90th-Percentile TTI—California

Table D.27.a. Basic Summary

Location Variability

Mean 0.0358 Std deviation 0.1135

Median 0.0169 Variance 0.0129

Min -0.6737 Range 1.0585

Max 0.3848 Interquartile range 0.0611

Table D.27.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate

95% 
Confidence 

Limits

Mean 0.0358 0.0194 0.0522

Std deviation 0.1135 0.1030 0.1263

Variance 0.0129 0.0106 0.0160

Table D.27.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 4.3133 <0.0001

Figure D.69. Residual plot—90th-percentile TTI—
California.

Figure D.70. Residual histogram—90th-percentile 
TTI—California.

Figure D.71. Residual normality plot—90th-percentile 
TTI—California.
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Minnesota

Figure D.72. Residual plot—90th-percentile TTI—
Minnesota.

Figure D.73. Residual histogram—90th-percentile 
TTI—Minnesota.

Table D.28. Residual Analysis— 
90th-Percentile TTI—Minnesota

Table D.28.a. Basic Summary

Location Variability

Mean -0.0416 Std deviation 0.1453

Median 0.0064 Variance 0.0211

Min -0.5958 Range 0.7700

Max 0.1742 Interquartile range 0.0297

Table D.28.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0416 -0.0741 -0.0090

Std deviation 0.1453 0.1256 0.1723

Variance 0.0211 0.0158 0.0297

Table D.28.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -2.5415 0.0130

Figure D.74. Residual normality plot—90th-percentile 
TTI—Minnesota.
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Salt Lake City

Figure D.75. Residual plot—90th-percentile TTI—Salt 
Lake City.

Figure D.76. Residual histogram—90th-percentile 
TTI—Salt Lake City.

Table D.29. Residual Analysis— 
90th-Percentile TTI—Salt Lake City

Table D.29.a. Basic Summary

Location Variability

Mean 0.0195 Std deviation 0.0446

Median 0.0048 Variance 0.0020

Min -0.1603 Range 0.2729

Max 0.1126 Interquartile range 0.0284

Table D.29.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0195 0.0061 0.0329

Std deviation 0.0446 0.0369 0.0564

Variance 0.0020 0.0014 0.0038

Table D.29.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 2.9347 0.0053

Figure D.77. Residual normality plot—90th-percentile 
TTI—Salt Lake City.
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Spokane

Figure D.78. Residual plot—90th-percentile TTI—
Spokane.

Figure D.79. Residual histogram—90th-percentile 
TTI—Spokane.

Table D.30. Residual Analysis— 
90th-Percentile TTI—Spokane

Table D.30.a. Basic Summary

Location Variability

Mean 0.0457 Std deviation 0.0412

Median 0.0491 Variance 0.0017

Min -0.0033 Range 0.1151

Max 0.1118 Interquartile range 0.0773

Table D.30.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0457 0.0195 0.0719

Std deviation 0.0412 0.0292 0.0700

Variance 0.0017 0.0009 0.0049

Table D.30.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 3.8418 0.0027

Figure D.80. Residual normality plot—90th-percentile 
TTI—Spokane.
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80th-Percentile TTi Model

California

Figure D.81. Residual plot—80th-percentile TTI—
California.

Figure D.82. Residual histogram—80th-percentile 
TTI—California.

Table D.31. Residual Analysis— 
80th-Percentile TTI—California

Table D.31.a. Basic Summary

Location Variability

Mean 0.0282 Std deviation 0.0598

Median 0.0159 Variance 0.0036

Min -0.1918 Range 0.4181

Max 0.2263 Interquartile range 0.0473

Table D.31.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0282 0.0196 0.0369

Std deviation 0.0598 0.0543 0.0665

Variance 0.0036 0.0029 0.0044

Table D.31.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 6.4630 <0.0001

Figure D.83. Residual normality plot—80th-percentile 
TTI—California.
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Minnesota

Figure D.84. Residual plot—80th-percentile TTI—
Minnesota.

Figure D.85. Residual histogram—80th-percentile 
TTI—Minnesota.

Table D.32. Residual analysis— 
80th-Percentile TTI—Minnesota

Table D.32.a. Basic Summary

Location Variability

Mean -0.0068 Std deviation 0.0899

Median 0.0123 Variance 0.0081

Min -0.3750 Range 0.5394

Max 0.1644 Interquartile range 0.0211

Table D.32.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0068 -0.0269 0.0134

Std deviation 0.0899 0.0777 0.1066

Variance 0.0081 0.0060 0.0114

Table D.32.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -0.6700 0.5049

Figure D.86. Residual normality plot—80th-percentile 
TTI—Minnesota.
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Salt Lake City

Figure D.87. Residual plot—80th-percentile TTI—Salt 
Lake City.

Figure D.88. Residual histogram—80th-percentile 
TTI—Salt Lake City.

Table D.33. Residual Analysis—80th-Percentile 
TTI—Salt Lake City

Table D.33.a. Basic Summary

Location Variability

Mean 0.017496 Std deviation 0.02340

Median 0.004669 Variance 0.0005477

Min 0.000173969 Range 0.08334

Max 0.0835138 Interquartile range 0.01919

Table D.33.b. Estimated Confidence Limits 
Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.017496 0.010465 0.024527

Std deviation 0.023403 0.019374 0.029563

Variance 0.000548 0.000375 0.000874

Table D.33.c. Student’s t-Test  
of Zero Residual Mean

Test Statistic p-Value

Student’s t-test 5.015032 <0.0001

Figure D.89. Residual normality plot—80th-percentile 
TTI—Salt Lake City.
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Spokane

Figure D.90. Residual plot—80th-percentile TTI—
Spokane.

Figure D.91. Residual histogram—80th-percentile 
TTI—Spokane.

Table D.34. Residual Analysis— 
80th-Percentile TTI—Spokane

Table D.34.a. Basic Summary

Location Variability

Mean 0.0332 Std deviation 0.0312

Median 0.0310 Variance 0.0010

Min -0.0093 Range 0.0887

Max 0.0794 Interquartile range 0.0549

Table D.34.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0332 0.0134 0.0531

Std deviation 0.0312 0.0221 0.0530

Variance 0.0010 0.0005 0.0028

Table D.34.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 3.6870 0.0036

Figure D.92. Residual normality plot—80th-percentile 
TTI—Spokane.
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Standard deviation of TTi Model

California

Figure D.93. Residual plot—standard deviation of 
TTI—California.

Figure D.94. Residual histogram—standard deviation 
of TTI—California.

Table D.35. Residual Analysis—
Standard Deviation of TTI—California

Table D.35.a. Basic Summary

Location Variability

Mean 0.0235 Std deviation 0.0808

Median 0.0160 Variance 0.0065

Min -0.2805 Range 0.5395

Max 0.2590 Interquartile range 0.0739

Table D.35.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0808 0.0118 0.0351

Std deviation 0.0065 0.0733 0.0899

Variance 0.5395 0.0054 0.0081

Table D.35.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 3.9710 0.0001

Figure D.95. Residual normality plot—standard  
deviation of TTI—California.



202

Minnesota

Figure D.96. Residual plot—standard deviation of 
TTI—Minnesota.

Figure D.97. Residual histogram—standard deviation 
of TTI—Minnesota.

Table D.36. Residual Analysis—
Standard Deviation of TTI—Minnesota

Table D.36.a. Basic Summary

Location Variability

Mean -0.0309 Std deviation 0.0987

Median 0.0033 Variance 0.0097

Min -0.4453 Range 0.5404

Max 0.0950 Interquartile range 0.0693

Table D.36.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0309 -0.0530 -0.0088

Std deviation 0.0987 0.0853 0.1170

Variance 0.0097 0.0073 0.0137

Table D.36.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -2.7848 0.0067

Figure D.98. Residual normality plot—standard  
deviation of TTI—Minnesota.
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Salt Lake City

Figure D.99. Residual plot—standard deviation of 
TTI—Salt Lake City.

Figure D.100. Residual histogram—standard  
deviation of TTI—Salt Lake City.

Table D.37. Residual Analysis—
Standard Deviation of TTI—Salt Lake City

Table D.37.a. Basic Summary

Location Variability

Mean 0.0148 Std deviation 0.0574

Median 0.0021 Variance 0.0033

Min -0.1706 Range 0.2922

Max 0.1216 Interquartile range 0.0645

Table D.37.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0148 -0.0024 0.0320

Std deviation 0.0573 0.0475 0.0724

Variance 0.0033 0.0023 0.0052

Table D.37.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 1.7297 0.0907

Figure D.101. Residual normality plot—standard 
deviation of TTI—Salt Lake City.
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Spokane

Figure D.102. Residual plot—standard deviation of 
TTI—Spokane.

Figure D.103. Residual histogram—standard  
deviation of TTI—Spokane.

Table D.38. Residual Analysis— 
Standard Deviation of TTI—Spokane

Table D.38.a. Basic Summary

Location Variability

Mean 0.0415 Std deviation 0.0551

Median 0.0504 Variance 0.0030

Min -0.0645 Range 0.1829

Max 0.1184 Interquartile range 0.0616

Table D.38.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0415 0.0065 0.0766

Std deviation 0.0551 0.0390 0.0936

Variance 0.0030 0.0015 0.0088

Table D.38.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 2.6108 0.0242

Figure D.104. Residual normality plot—standard 
deviation of TTI—Spokane.
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Percentage of On-Time Trips 
with Over 50 mph Mean Speed

California

Figure D.105. Residual plot—percentage of on-time 
trips over 50 mph—California.

Figure D.106. Residual histogram—percentage of 
on-time trips over 50 mph—California.

Table D.39. Residual Analysis—
Percentage of On-Time Trips  
Over 50 mph—California

Table D.39.a. Basic Summary

Location Variability

Mean -0.0117 Std deviation 0.0886

Median -0.0153 Variance 0.0079

Min -0.2374 Range 0.6062

Max 0.3687 Interquartile range 0.0559

Table D.39.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0117 -0.0245 0.0011

Std deviation 0.0886 0.0804 0.0986

Variance 0.0079 0.0065 0.0097

Table D.39.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -1.8041 0.0728

Figure D.107. Residual normality plot—percentage 
of on-time trips over 50 mph—California.
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Minnesota

Figure D.108. Residual plot—percentage of on-time 
trips over 50 mph—Minnesota.

Figure D.109. Residual histogram—percentage of 
on-time trips over 50 mph—Minnesota.

Figure D.110. Residual normality plot—percentage 
of on-time trips over 50 mph—Minnesota.

Table D.40. Residual Analysis—
Percentage of On-Time Trips  
Over 50 mph—Minnesota

Table D.40.a. Basic Summary

Location Variability

Mean -0.0353 Std deviation 0.0510

Median -0.0221 Variance 0.0026

Min -0.2230 Range 0.3729

Max 0.1499 Interquartile range 0.0526

Table D.40.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0353 -0.0467 -0.0239

Std deviation 0.0510 0.0441 0.0604

Variance 0.0026 0.0019 0.0037

Table D.40.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -6.1620 <0.0001
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Salt Lake City

Figure D.111. Residual plot—percentage of on-time 
trips over 50 mph—Salt Lake City.

Figure D.112. Residual histogram—percentage of 
on-time trips over 50 mph—Salt Lake City.

Table D.41. Residual Analysis—
Percentage of On-Time Trips  
Over 50 mph—Salt Lake City

Table D.41.a. Basic Summary

Location Variability

Mean -0.0318 Std deviation 0.0457

Median -0.0066 Variance 0.0021

Min -0.1350 Range 0.1927

Max 0.0577 Interquartile range 0.0568

Table D.41.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0318 -0.0455 -0.0181

Std deviation 0.0457 0.0378 0.0577

Variance 0.0021 0.0014 0.0033

Table D.41.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -4.6715 <0.0001

Figure D.113. Residual normality plot—percentage 
of on-time trips over 50 mph—Salt Lake City.
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Spokane

Figure D.114. Residual plot—percentage of on-time 
trips over 50 mph—Spokane.

Figure D.115. Residual histogram—percentage of 
on-time trips over 50 mph—Spokane.

Table D.42. Residual Analysis—
Percentage of On-Time Trips  
Over 50 mph—Spokane

Table D.42.a. Basic Summary

Location Variability

Mean -0.0601 Std deviation 0.0417

Median -0.0570 Variance 0.0017

Min -0.1295 Range 0.1266

Max -0.0029 Interquartile range 0.0728

Table D.42.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0601 -0.0866 -0.0336

Std deviation 0.0417 0.0295 0.0708

Variance 0.0017 0.0009 0.0050

Table D.42.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -4.9958 0.0004

Figure D.116. Residual normality plot—percentage 
of on-time trips over 50 mph—Spokane.
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Percentage of On-Time Trips 
with Over 45 mph Mean Speed

California

Figure D.117. Residual plot—percentage of on-time 
trips over 45 mph—California.

Figure D.118. Residual histogram—percentage of 
on-time trips over 45 mph—California.

Table D.43. Residual Analysis—Percentage of 
On-Time Trips Over 45 mph—California

Table D.43.a. Basic Summary

Location Variability

Mean -0.01220 Std deviation 0.06721

Median -0.01415 Variance 0.00452

Min -0.1876805 Range 0.44630

Max 0.2586168 Interquartile range 0.04294

Table D.43.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0122 -0.0219 -0.0025

Std deviation 0.0672 0.0610 0.0748

Variance 0.0045 0.0037 0.0056

Table D.43.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -2.4815 0.0140

Figure D.119. Residual normality plot—percentage 
of on-time trips over 45 mph—California.
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Minnesota

Figure D.120. Residual plot—percentage of on-time 
trips over 45 mph—Minnesota.

Figure D.121. Residual histogram—percentage of 
on-time trips over 45 mph—Minnesota.

Figure D.122. Residual normality plot—percentage 
of on-time trips over 45 mph—Minnesota.

Table D.44. Residual Analysis - 
Percentage of On-Time Trips  
Over 45 mph—Minnesota

Table D.44.a. Basic Summary

Location Variability

Mean -0.0306 Std deviation 0.0372

Median -0.0208 Variance 0.0014

Min -0.1719 Range 0.2103

Max 0.0383 Interquartile range 0.0400

Table D.44.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0306 -0.0389 -0.0222

Std deviation 0.0372 0.0322 0.0441

Variance 0.0014 0.0010 0.0019

Table D.44.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -7.3038 <0.0001
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Salt Lake City

Figure D.123. Residual plot—percentage of on-time 
trips over 45 mph—Salt Lake City.

Figure D.124. Residual histogram—percentage of 
on-time trips over 45 mph—Salt Lake City.

Table D.45. Residual Analysis—
Percentage of On-Time Trips  
Over 45 mph—Salt Lake City

Table D.45.a. Basic Summary

Location Variability

Mean -0.0238 Std deviation 0.0366

Median -0.0043 Variance 0.0013

Min -0.1053 Range 0.1695

Max 0.0642 Interquartile range 0.0425

Table D.45.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0238 -0.0348 -0.0128

Std deviation 0.0366 0.0303 0.0462

Variance 0.0013 0.0009 0.0021

Table D.45.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -4.3584 <0.0001

Figure D.125. Residual normality plot—percentage 
of on-time trips over 45 mph—Salt Lake City.
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Spokane

Figure D.126. Residual plot—percentage of on-time 
trips over 45 mph—Spokane.

Figure D.127. Residual histogram—percentage of 
on-time trips over 45 mph—Spokane.

Table D.46. Residual Analysis—
Percentage of On-Time Trips  
Over 45 mph—Spokane

Table D.46.a. Basic Summary

Location Variability

Mean -0.0459 Std deviation 0.0322

Median -0.0458 Variance 0.0010

Min -0.0973 Range 0.0953

Max -0.0020 Interquartile range 0.0594

Table D.46.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.04591 -0.0664 -0.0254

Std deviation 0.0322 0.0228 0.0547

Variance 0.0010 0.0005 0.0030

Table D.46.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -4.9369 0.0004

Figure D.128. Residual normality plot—percentage 
of on-time trips over 45 mph—Spokane.
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Percentage of On-Time Trips 
with Over 30 mph Mean Speed

California

Figure D.129. Residual plot—percentage of on-time 
trips over 30 mph—California.

Figure D.130. Residual histogram—percentage of 
on-time trips over 30 mph—California.

Figure D.131. Residual normality plot—percentage 
of on-time trips over 30 mph—California.

Table D.47. Residual Analysis—
Percentage of On-Time Trips  
Over 30 mph—California

Table D.47.a. Basic Summary

Location Variability

Mean -0.0009 Std deviation 0.0247

Median -0.0055 Variance 0.0006

Min -0.1009 Range 0.2143

Max 0.1134 Interquartile range 0.0037

Table D.47.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0009 -0.0045 0.0026

Std deviation 0.0247 0.0224 0.0275

Variance 0.0006 0.0005 0.0008

Table D.47.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -0.5185 0.6048
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Minnesota

Figure D.132. Residual plot—percentage of on-time 
trips over 30 mph—Minnesota.

Figure D.133. Residual histogram—percentage of 
on-time trips over 30 mph—Minnesota.

Table D.48. Residual Analysis—
Percentage of On-Time Trips  
Over 30 mph—Minnesota

Table D.48.a. Basic Summary

Location Variability

Mean 0.0021 Std deviation 0.0331

Median -0.0056 Variance 0.0011

Min -0.1103 Range 0.2336

Max 0.1233 Interquartile range 0.0016

Table D.48.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean 0.0021 -0.0053 0.0095

Std deviation 0.0331 0.0286 0.0392

Variance 0.0011 0.0008 0.0015

Table D.48.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test 0.5652 0.5736

Figure D.134. Residual normality plot—percentage 
of on-time trips over 30 mph—Minnesota.
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Salt Lake City

Figure D.135. Residual plot—percentage of on-time 
trips over 30 mph—Salt Lake City.

Figure D.136. Residual histogram—percentage of 
on-time trips over 30 mph—Salt Lake City.

Figure D.137. Residual normality plot—percentage 
of on-time trips over 30 mph—Salt Lake City.

Table D.49. Residual Analysis—
Percentage of On-Time Trips  
Over 30 mph—Salt Lake City

Table D.49.a. Basic Summary

Location Variability

Mean -0.0026 Std deviation 0.0133

Median -0.0054 Variance 0.0002

Min -0.0092 Range 0.0671

Max 0.0579 Interquartile range 0.0009

Table D.49.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0026 -0.0065 0.0014

Std deviation 0.0133 0.0110 0.0168

Variance 0.0002 0.0001 0.0003

Table D.49.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -1.2873 0.2047



216

Spokane

Figure D.138. Residual plot—percentage of on-time 
trips over 30 mph—Spokane.

Figure D.139. Residual histogram—percentage of 
on-time trips over 30 mph—Spokane.

Figure D.140. Residual normality plot—percentage 
of on-time trips over 30 mph—Spokane.

Table D.50.c. Student’s t-Test of 
Zero Residual Mean

Test Statistic p-Value

Student’s t-test -6.4287 <0.0001

Table D.50. Residual Analysis—
Percentage of On-Time Trips  
Over 30 mph—Spokane

Table D.50.a. Basic Summary

Location Variability

Mean -0.0060 Std deviation 0.0032

Median -0.0062 Variance 0.0000

Min -0.0095 Range 0.0119

Max 0.0024 Interquartile range 0.0034

Table D.50.b. Estimated Confidence 
Limits Assuming Normality

Parameter Estimate
95% Confidence 

Limits

Mean -0.0060 -0.0080 -0.0039

Std deviation 0.0032 0.0023 0.0055

Variance 0.0000 0.0000 0.0000
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Overview

This appendix presents the results of the recalibration of the 
L03 data-poor models and the development of new model 
forms for the 95th-, 90th-, and 80th-percentile predictive 
equations for the travel time index (TTI).

Recalibration

For each recalibration, model statistics along with diagnostic 
figures are presented. The model statistics show the overall 
model performance measures, such as the mean squared 
error (MSE) and the F-test. R2 is also presented if applicable, 
but it may be redefined in different cases. The model statistics 
also include parameter-associated results, such as the param-
eter estimates and the t-test results. The figures include (if 
applicable)

1. Fit plot in the original scale. This scatter plot shows the 
measured data samples and the recalibrated model line.

2. Fit plot showing a similar scatter plot, but the x-axis is in 
logarithm scale. This is the linear recalibrated model form. 
The 95% prediction confidence limits are also indicated.

3. Observed-by-predicted plot. If the model fits well, the scat-
tered points should fall on the two sides of the reference line.

4. Residual-by-predicted plot. This is an important method 
to analyze the residuals; same method is used in the model 
validation analysis to evaluate the model performance.

5. Outlier and leverage plot. This is to analyze the outliers and 
leverage points that may raise questions in model building.

6. Histogram. This is used to display the distribution of the 
residuals.

7. Normality plot. This is used to show how close the residual 
distribution is to a normal distribution.

Note that these statistics and plots are presented to evaluate 
the model from different perspectives; however, it is almost 
always impossible to build a real world model that perfectly 

satisfies all the criteria. Some of the measures are more 
important than others.

From the recalibration results we can see that the non-
constant variance is still a common problem for almost all 
cases; however, due to the characteristics of the data, it may 
not be fully resolvable.

95th-Percentile TTI

The recalibration of the 95th-percentile TTI model is con-
ducted by building a linear model between the response 
variable, 95th-percentile TTI, and the independent variable, 
log-transformed mean TTI—ln(meanTTI)—with the restric-
tion that the intercept is fixed at 1. Due to the restriction, the 
R2 is redefined.

AllData

The recalibrated model for the 95th-percentile TTI with the 
AllData set is

( )= +95th-percentile TTI 1 3.4201 ln meanTTIAllData p

Overall, this model can predict the measured data with good 
accuracy (Table E.1). The F-test (Table E.2) shows strong 
evidence that the model can explain most of the variance of 
the response variable. The t-test (Table E.3) for individual 
predictors also shows strong evidence for significance of the 
independent variable.

We need to further analyze the goodness-of-fit of the model. 
The scatter plot (Figure E.1) shows how the regional data 
identified by different colors are scattered along the model 
line in the original scale (nontransformed). The observation 
that most blue dots (representing Minnesota data) are beyond 
the model line while most of the red dots (representing the 
California data) are below the model line indicates that regional 
calibration may be necessary.

A p p e n d i x  e

Model Enhancements
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Figures E.1 through E.7 evaluate the model performance 
from different perspectives. The scatter plot (Figure E.1) shows 
that the model can predict the data trend closely. From the fit 
plot (Figure E.2) we can see that some of the data samples fall 
outside the confidence limits, which may be outliers. The pre-
dicted versus measured plot (Figure E.3) shows in another 
way how the model fits the data. In the case of perfect fit, the 
data samples would fall on the equal value line; however, with 
noise in the measured data, they are supposed to scatter along 
the diagonal line. The pattern in the figure shows that the model 
can predict the data samples with a good satisfactory level. The 
residual plot (Figure E.4) shows that the residuals are generally 

randomly scattered, although the increasing residual variance 
problem still exists, and there is some nonrandom pattern 
around the origin. The outlier and leverage plot (Figure E.5) 
shows the identified outliers and leverage points. The histogram 
and the normality plot (Figures E.6 and E.7) show that even 
with recalibration, the residuals may still not satisfy the normal 
distribution assumption perfectly.

Table E.1. Root MSE and R-Square, 
Recalibrated 95th-Percentile  
TTI Model, AllData

Root MSE 0.17230 R-Square 0.9884

Table E.2. Analysis of Variance, Recalibrated  
95th-Percentile TTI Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model 1 813.98823 813.98823 27418.0 <0.0001

Error 322   9.55957   0.02969

Uncorrected 
total

323 823.54780

Table E.3. Parameter Estimates, Recalibrated 95th-Percentile TTI Model, AllData

Variable DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

ln(mean TTI) (AllData) 1 3.42007 0.04034 84.78 <0.0001 3.34071 3.49944

RESTRIC -1 -2.54913 2.60948 -0.98 0.3294a -7.66023 2.56198

a The model restricts the intercept to be 1 (unity).
Note: Infty = infinity.

Figure E.1. Scatter plot in original scale, recalibrated 95th-percentile 
TTI model, AllData.
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Figure E.2. Fit plot in x-axis log scale, recalibrated 95th-percentile  
TTI model, AllData.

Figure E.3. Observed-by-predicted plot, recalibrated  
95th-percentile TTI model, AllData.
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Figure E.4. Residual-by-predicted plot, recalibrated 95th-percentile  
TTI model, AllData.

Figure E.5. Outlier and leverage plot, recalibrated 95th-percentile  
TTI model, AllData.
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Figure E.6. Distribution of residuals, recalibrated 95th-percentile  
TTI model, AllData.

Figure E.7. Quantile-quantile (Q-Q) plot of residuals, recalibrated  
95th-percentile TTI model, AllData.
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Table E.6. Parameter Estimates, Recalibrated 95th-Percentile  
TTI Model, California

Variable DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

ln(mean TTI) (CA) 1 3.18182 0.04671 68.12 <0.0001 3.08966 3.27397

RESTRICT -1 -1.46715 1.83910 -0.80 0.4265a -5.06758 2.13327

a The model restricts the intercept to be 1 (unity).

Table E.4. Root MSE and R-Square, 
Recalibrated 95th-Percentile  
TTI Model, California

Root MSE 0.16425 R-Square 0.9898

Table E.5. Analysis of Variance, Recalibrated  
95th-Percentile TTI Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model 1 484.90978 484.90978 17974.2 <0.0001

Error 186   5.01793   0.02698

Uncorrected 
total

187 489.92771

Figure E.8. Fit plot in original scale, recalibrated 95th-percentile  
TTI model, California.

California

The recalibrated model for the 95th-percentile TTI with the 
California (CA) set is

( )= +95th-percentile TTI 1 3.1818 ln meanTTICA p

The root MSE and R-Square are given in Table E.4. The F-test 
(Table E.5) yields nearly zero p-values, indicating strong con-
fidence in the model validity. Student’s t-tests (Table E.6) also 
show the significance of the model parameters. The scatter 
plot, fit plot, and the observed-by-predicted plot all show that 
the model can predict the data trend well (refer to Figures E.8 

through E.14 for interpretation of the observations). How-
ever, the residual-by-predicted plot indicates the possibility 
of inadequate model form as the residuals seem not to be 
randomly scattered along the reference line. The outlier and 
leverage plot show that outliers and leverage points may exist, 
while the histogram and the normality plot show that the 
residual distribution does not perfectly follow a normal 
distribution.
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Figure E.9. Fit plot in x-axis log scale, recalibrated 95th-percentile  
TTI model, California.

Figure E.10. Observed-by-predicted plot, recalibrated 
95th-percentile TTI model, California.
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Figure E.11. Residual-by-predicted plot, recalibrated 95th-percentile  
TTI model, California.

Figure E.12. Outlier and leverage plot, recalibrated 95th-percentile  
TTI model, California.
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Figure E.13. Distribution of residuals, recalibrated 95th-percentile  
TTI model, California.

Figure E.14. Q-Q plot of residuals, recalibrated 95th-percentile  
TTI model, California.
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Table E.9. Parameter Estimates, Recalibrated 95th-Percentile TTI Model, Minnesota

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

MN_TTImean_ln ln(mean TTI) (MN) 1 3.97871 0.06673 59.63 <0.0001 3.84587 4.11156

RESTRICT RESTRICT -1 0.27267 1.13445  0.24 0.8118a -1.94456 2.48990

a The model restricts the intercept to be 1 (unity).

Table E.7. Root MSE and R-Square, 
Recalibrated 95th-Percentile  
TTI Model, Minnesota

Root MSE 0.15298 R-Square 0.9928

Table E.8. Analysis of Variance, Recalibrated 
95th-Percentile TTI Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model  1 252.12485 252.12485 10773.6 <0.0001

Error 78   1.82537   0.02340

Uncorrected 
total

79 253.95022

Figure E.15. Fit plot in original scale, recalibrated 95th-percentile  
TTI model, Minnesota.

Minnesota

The recalibrated model for the 95th-percentile TTI with the 
Minnesota (MN) set is

( )= +95th-percentile TTI 1 3.9787 ln meanTTIMN p

Table E.7 gives the root MSE and R-Square values. The F-test 
(Table E.8) yields a large F-value and a nearly zero p-value, 
showing strong confidence that the model can explain most 
of the variance of the response variable. The Student’s t-test 
(Table E.9) also shows strong evidence that the model parameter 

is not zero. From the plots we can see that the model can predict 
the data trend well: the residual-by-predicted plot shows a 
generally random pattern although the nonconstant variance 
problem still exists; some of the samples may be outliers and 
leverage points; and the residual distribution does not perfectly 
follow a normal distribution (refer to Figures E.15 through E.21 
for interpretation of the observations).
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Figure E.16. Fit plot in x-axis log scale, recalibrated 95th-percentile  
TTI model, Minnesota.

Figure E.17. Observed-by-predicted plot, recalibrated  
95th-percentile TTI model, Minnesota.
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Figure E.18. Residual-by-predicted plot, recalibrated 95th-percentile  
TTI model, Minnesota.

Figure E.19. Outlier and leverage plot, recalibrated 95th-percentile  
TTI model, Minnesota.
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Figure E.20. Distribution of residuals, recalibrated 95th-percentile  
TTI model, Minnesota.

Figure E.21. Q-Q plot of residuals, recalibrated 95th-percentile  
TTI model, Minnesota.
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Table E.12. Parameter Estimates, Recalibrated 90th-Percentile TTI Model, AllData

Variable DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

ln(mean TTI) (AllData) 1 2.81886 0.02780 101.39 <0.0001 2.76416 2.87355

RESTRICT -1 -6.40766 1.79838 -3.56 0.0003a -9.93010 -2.88523

a The model restricts the intercept to be 1 (unity).

Table E.10. Analysis of Variance, Recalibrated  
90th-Percentile TTI Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model   1 688.14766 688.14766 48802.7 <0.0001

Error 322   4.54040   0.01410

Uncorrected 
total

323 692.68806

Table E.11. Root MSE and R-Square, 
Recalibrated 90th-Percentile  
TTI Model, AllData

Root MSE 0.11875 R-Square 0.9934

90th-percentile TTI

The recalibration of the 90th-percentile TTI model is con-
ducted by building a linear model between the response 
variable, 90th-percentile TTI, and the independent variable, 
log-transformed mean TTI—ln(mean TTI)—with the restric-
tion that the intercept is fixed at 1. Due to the restriction, the 
R2 is redefined.

AllData

The recalibrated model for the 90th-percentile TTI with the 
AllData set is

( )= +90th-percentile TTI 1 2.8189 ln meanTTIAllData p

The statistical test results (Tables E.10 through E.12) show 
that both the model and the parameters are significant. We 
need to further analyze the goodness-of-fit of the model. The 
scatter plot (Figure E.22) shows that the model can predict 
the trend of the data samples, but there may be two question-
able patterns. First, the blue points representing the MN data 
samples are mostly beyond the model line, while the red points 
representing the CA data are mostly below the model line, 
indicating regional disparity. Another pattern (Figure E.23) 
is that there are more points beyond the upper 95% predic-
tion confidence limit than below the lower 95% prediction 
confidence limit, which may indicate that the model form  
may not be adequate; perhaps the 90th-percentile TTI increases  
faster than the log-line. Figure E.24 shows the predicted versus 
observed plot. The residual-by-predicted plot (Figure E.25) 
shows a generally random pattern with the nonconstant vari-
ance problem. Other plots show the existence of outlier and 

leverage points (Figure E.26) and that the residual distribu-
tion does not perfectly follow a normal distribution because 
skewness exists (Figures E.27 and E.28).

California

The recalibrated model for the 90th-percentile TTI with the 
CA set is

( )= +90th-percentile TTI 1 2.6631 ln meanTTICA p

The statistical tests results (Tables E.13 through E.15) show that 
both the model and the parameters are significant. The scatter 
plots (Figures E.29 through E.31) show that the model predicts 
the data samples well. The residual plots (Figures E.32 and E.35) 
show that the nonconstant variance problem still exists, and the 
residuals seem to present a nonrandom pattern. Figure E.33 
shows the outlier and leverage plot. The histogram and the nor-
mality plot (Figures E.34 and E.35) show that the residual dis-
tribution does not perfectly follow a normal distribution.

Minnesota

The recalibrated model for the 90th-percentile TTI with the 
MN set is

( )= +90th-percentile TTI 1 3.2008 ln meanTTIMN p

The statistical test results (Tables E.16 through E.18) show that 
both the model and the parameters are significant. The scatter 
plots and the residual-by-predicted plot (Figures E.36 through 
E.40) show that the model can predict the data trend well, and 
the residuals present a random pattern along the zero refer-
ence line, although the nonconstant variance problem still 
exists. The histogram and the normality plot (Figures E.41 
and E.42) show that the residual may not perfectly follow a 
normal distribution.

(text continues on page 242)
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Figure E.22. Scatter plot in original scale, recalibrated  
90th-percentile TTI model, AllData.

Figure E.23. Fit plot in x-axis log scale, recalibrated 90th-percentile  
TTI model, AllData.
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Figure E.25. Residual-by-predicted plot, recalibrated 90th-percentile  
TTI model, AllData.

Figure E.24. Observed-by-predicted plot, recalibrated  
90th-percentile TTI model, AllData.
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Figure E.26. Outlier and leverage plot, recalibrated 90th-percentile  
TTI model, AllData.

Figure E.27. Distribution of residuals, recalibrated 90th-percentile  
TTI model, AllData.
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Table E.15. Parameter Estimates, Recalibrated 90th-Percentile TTI Model, California

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

CA_TTImean_ln ln(mean TTI) (CA) 1 2.66311 0.03273 81.37 <0.0001 2.59854 2.72767

RESTRICT -1 -3.44219 1.28862 -2.67 0.0072a -5.96493 -0.91945

a The model restricts the intercept to be 1 (unity).

Table E.13. Analysis of Variance, Recalibrated  
90th-Percentile TTI Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model 1 414.83485 414.83485 31320.3 <0.0001

Error 186   2.46355   0.01324

Uncorrected 
total

187 417.29840

Table E.14. Root MSE and R-Square, 
Recalibrated 90th-Percentile  
TTI Model, California

Root MSE 0.11509 R-Square 0.9941

Figure E.28. Q-Q plot of residuals, recalibrated 90th-percentile  
TTI model, AllData.
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Figure E.29. Fit plot in original scale, recalibrated 90th-percentile  
TTI model, California.

Figure E.30. Fit plot in x-axis log scale, recalibrated 90th-percentile  
TTI model, California.
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Figure E.32. Residual-by-predicted plot, recalibrated 90th-percentile  
TTI model, California.

Figure E.31. Observed-by-predicted plot, recalibrated 
90th-percentile TTI model, California.
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Figure E.33. Outlier and leverage plot, recalibrated 90th-percentile  
TTI model, California.

Figure E.34. Distribution of residuals, recalibrated 90th-percentile  
TTI model, California.
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Table E.18. Parameter Estimates, Recalibrated 90th-Percentile TTI Model, Minnesota

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

MN_TTImean_ln ln(mean TTI) (MN) 1 3.20080 0.04570 70.03 <0.0001 3.10981 3.29179

RESTRICT -1 -1.43443 0.77701 -1.85 0.0645a -2.95306 0.08421

a The model restricts the intercept to be 1 (unity).

Table E.16. Analysis of Variance, Recalibrated  
90th-Percentile TTI Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model  1 201.88201 201.88201 18388.9 <0.0001

Error 78   0.85632   0.01098

Uncorrected 
total

79 202.73833

Table E.17. Root MSE and R-Square, 
Recalibrated 90th-Percentile  
TTI Model, Minnesota

Root MSE 0.10478 R-Square 0.9958

Figure E.35. Q-Q plot of residuals, recalibrated 90th-percentile  
TTI model, California.
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Figure E.36. Fit plot in original scale, recalibrated 90th-percentile  
TTI model, Minnesota.

Figure E.37. Fit plot in x-axis log scale, recalibrated 90th-percentile  
TTI model, Minnesota.
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Figure E.39. Residual-by-predicted plot, recalibrated 90th-percentile  
TTI model, Minnesota.

Figure E.38. Observed-by-predicted plot, recalibrated  
90th-percentile TTI model, Minnesota.
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Figure E.41. Distribution of residuals, recalibrated 90th-percentile  
TTI model, Minnesota.

Figure E.40. Outlier and leverage plot, recalibrated 90th-percentile  
TTI model, Minnesota.
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Table E.19. Analysis of Variance, Recalibrated  
80th-Percentile TTI Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model 1 573.17609 573.17609 122817 <0.0001

Error 322   1.50274   0.00467

Uncorrected 
total

323 574.67883

Table E.20. Root MSE and R-Square,  
Recalibrated 80th-Percentile  
TTI Model, AllData

Root MSE 0.06831 R-Square 0.9974

Figure E.42. Q-Q plot of residuals, recalibrated 90th-percentile  
TTI model, Minnesota.

80th-Percentile TTI

The recalibration of the 80th-percentile TTI model is con-
ducted by building a linear model between the response 
variable, 80th-percentile TTI, and the independent variable, 
log-transformed mean TTI—ln(mean TTI)—with the restric-
tion that the intercept is fixed at 1. Due to the restriction, the 
R2 is redefined.

AllData

The recalibrated model for the 80th-percentile TTI with the 
AllData set is

( )= +80th-percentile TTI 1 2.1598 ln meanTTIAllData p

The statistical test results (Tables E.19 through E.21) show 
that both the model and the parameters are significant, which 
indicates that overall the model is valid. We need to further 
analyze the goodness-of-fit of the model. The scatter plot 
(Figure E.43), fit plot (Figure E.44), and observed-by- 
predicted plot (Figure E.45) show that although the model 
can generally predict the data trend, the model form may not 

be adequate. The residual-by-predicted plot (Figure E.46) also 
indicates the same problem because a nonrandom pattern 
exists. The outlier and leverage plot is shown in Figure E.47. 
The histogram and the normality plot (Figures E.48 and 
E.49) show that the residuals may not closely follow a normal 
distribution.
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Table E.21. Parameter Estimates, Recalibrated 80th-Percentile TTI Model, AllData

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

AllData_TTImean_ln ln(mean TTI) (AllData) 1 2.15981 0.01599 135.04 <0.0001 2.12835 2.19128

RESTRICT -1 -6.72653 1.03461 -6.50 <0.0001a -8.75299 -4.70007

a The model restricts the intercept to be 1 (unity).

Figure E.43. Scatter plot in original scale, recalibrated 80th-percentile 
TTI model, AllData.

Figure E.44. Fit plot in x-axis log scale, recalibrated 80th-percentile  
TTI model, AllData.
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Figure E.46. Residual-by-predicted plot, recalibrated 80th-percentile  
TTI model, AllData.

Figure E.45. Observed-by-predicted plot, recalibrated  
80th-percentile TTI model, AllData.
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Figure E.47. Outlier and leverage plot, recalibrated 80th-percentile  
TTI model, AllData.

Figure E.48. Distribution of residuals, recalibrated 80th-percentile  
TTI model, AllData.



246

Table E.24. Parameter Estimates, Recalibrated 80th-Percentile TTI Model, California

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

CA_TTImean_ln ln(mean TTI) (CA) 1 2.08443 0.01835 113.59 <0.0001 2.04823 2.12063

RESTRICT -1 -3.73107 0.72250 -5.16 <0.0001a -5.14551 -2.31663

a The model restricts the intercept to be 1 (unity).

Table E.22. Analysis of Variance, Recalibrated  
80th-Percentile TTI Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model   1 348.33950 348.33950 83662.1 <0.0001

Error 186   0.77444   0.00416

Uncorrected 
total

187 349.11394

Table E.23. Root MSE and R-Square, 
Recalibrated 80th-Percentile  
TTI Model, California

Root MSE 0.06453 R-Square 0.9978

Figure E.49. Q-Q plot of residuals, recalibrated 80th-percentile  
TTI model, AllData.

California

The recalibrated model for the 80th-percentile TTI with the 
CA set is

( )= +80th-percentile TTI 1 2.0844 ln meanTTICA p

The statistical test results (Tables E.22 through E.24) show that 
both the model and the parameters are significant. From the 
scatter plots (Figures E.50 through E.52) and the residual plot  
(Figure E.53) we can see that the model form may not be 
adequate because the 80th-percentile TTI seems to increase 
faster than the model line when the mean TTI is large. Fig-
ure E.54 shows the outlier and leverage plot. The histogram 
and the normality plot (Figures E.55 and E.56) show that 
the residual distribution does not closely follow a normal 
distribution.
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Figure E.50. Fit plot in original scale, recalibrated 80th-percentile  
TTI model, California.

Figure E.51. Fit plot in x-axis log scale, recalibrated 80th-percentile  
TTI model, California.
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Figure E.53. Residual-by-predicted plot, recalibrated 80th-percentile  
TTI model, California.

Figure E.52. Observed-by-predicted plot, recalibrated  
80th-percentile TTI model, California.
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Figure E.54. Outlier and leverage plot, recalibrated 80th-percentile  
TTI model, California.

Figure E.55. Distribution of residuals, recalibrated 80th-percentile  
TTI model, California.
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Table E.27. Parameter Estimates, Recalibrated 80th-Percentile TTI Model, Minnesota

Variable Label DF
Parameter 
Estimate

Standard 
Error t-Value Pr > t

95% Confidence 
Limits

Intercept Intercept 1 1.00000 0 Infty <0.0001 1.00000 1.00000

MN_TTImean_ln ln(mean TTI) (MN) 1 2.35394 0.03104 75.84 <0.0001 2.29214 2.41573

RESTRICT -1 -1.86088 0.52771 -3.53 0.0003a -2.89227 -0.82950

a The model restricts the intercept to be 1 (unity).

Table E.25. Analysis of Variance, Recalibrated  
80th-Percentile TTI Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value Pr > F

Model  1 157.28090 157.28090 31059.9 <0.0001

Error 78   0.39498   0.00506

Uncorrected 
total

79 157.67587

Table E.26. Root MSE and R-Square, 
Recalibrated 80th-Percentile  
TTI Model, Minnesota

Root MSE 0.07116 R-Square 0.9975

Figure E.56. Q-Q plot of residuals, recalibrated 80th-percentile  
TTI model, California.

Minnesota

The recalibrated model for the 80th-percentile TTI with the 
MN set is

( )= +80th-percentile TTI 1 2.3539 ln meanTTIMN p

The statistical test results (Tables E.25 through E.27) show 
that both the model and the parameters are significant. The 
scatter plots (Figures E.57 through E.59) show that the 
model can predict the trend in data samples. However, 
the residual plot (Figure E.60) shows that the data samples 
are not evenly distributed along the zero reference line. Fig-
ure E.61 shows the outlier and leverage diagnostics. The his-
togram and the normality plot (Figures E.62 and E.63) show 
that the residual distribution does not closely follow a nor-
mal distribution.
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Figure E.57. Fit plot in original scale, recalibrated 80th-percentile  
TTI model, Minnesota.

Figure E.58. Fit plot in x-axis log scale, recalibrated 80th-percentile 
TTI model, Minnesota.
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Figure E.60. Residual-by-predicted plot, recalibrated 80th-percentile  
TTI model, Minnesota.

Figure E.59. Observed-by-predicted plot, recalibrated  
80th-percentile TTI model, Minnesota.
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Figure E.61. Outlier and leverage plot, recalibrated 80th-percentile  
TTI model, Minnesota.

Figure E.62. Distribution of residuals, recalibrated 80th-percentile  
TTI model, Minnesota.
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Table E.29. Parameter Estimates, Recalibrated 
Standard Deviation TTI Model, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.7775 0.0158 0.7464 0.8086

b 0.6810 0.0242 0.6334 0.7287

Table E.28. Analysis of Variance, Recalibrated 
Standard Deviation TTI Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model   2 25.3386 12.6693 1896.51 <0.0001

Error 321  2.1444  0.00668

Uncorrected 
total

323 27.4829

Figure E.63. Q-Q plot of residuals, recalibrated 80th-percentile  
TTI model, Minnesota.

Standard Deviation of TTI

The recalibration of the standard deviation of the TTI model is 
conducted by building a nonlinear model between the response 
variable, the standard deviation of TTI, and the independent 
variable, mean TTI. The model form is the same as the L03 
data-poor model form, described as

( )= −StdDevTTI meanTTI 1a bp

where a and b are the model parameters to be calibrated. Note 
that a similar model can be built by adopting a linear model 
form using log-transformed dependent and independent vari-
ables; however, it is found that the nonlinear model and the 
transformed linear model are quite different, and the nonlinear 
model line is closer to the measured data trend.

AllData

The recalibrated model for the standard deviation of TTI 
with the AllData set is

( )= −StdDevTTI 0.7775 meanTTI 1AllData
0.6810p

The F-test results (Table E.28) show that the model is signifi-
cant. The parameter estimation results are shown in Table E.29. 
The scatter plot (Figure E.64), the fit plot (Figure E.65), and 
the observed-by-predicted plot (Figure E.66) all show that the  
model can generally predict the trend of the measured data. 
From the scatter plot we can also see that most of the blue points 

representing the MN data samples are beyond the model line, 
while a greater portion of the red points representing the CA 
samples are below the model line, indicating regional differ-
ence. The residual-by-predicted plot (Figure E.67) indicates the 
problem of nonconstant variance; however, this problem may  
not be totally fixed due to the characteristics of the data. The 
histogram and the normality plot (Figures E.68 and E.69) show 
that the residual distribution is generally close to a normal dis-
tribution but with long tails.
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Figure E.64. Scatter plot in original scale, recalibrated standard  
deviation TTI model, AllData.

Figure E.65. Fit plot in original scale, recalibrated standard deviation  
TTI model, AllData.
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Figure E.67. Residual-by-predicted plot, recalibrated standard  
deviation TTI model, AllData.

Figure E.66. Observed-by-predicted plot, recalibrated 
standard deviation TTI model, AllData.
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Figure E.68. Distribution of raw residuals, recalibrated standard deviation 
TTI model, AllData.

Figure E.69. Q-Q plot of residuals, recalibrated standard deviation  
TTI model, AllData.
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California

The recalibrated model for the standard deviation of TTI 
with the CA set is

( )= −StdDevTTI 0.6886 meanTTI 1CA
0.6444p

The F-test (Table E.30) results show that the model is signifi-
cant. Table E.31 shows the parameter estimates. The fit plot 
(Figure E.70) and the observed-by-predicted plot (Figure E.71) 
show that the model generally fits the data. The residual- 
by-predicted plot (Figure E.72) shows that the nonconstant 
variance problem still exists. The histogram and the normal-
ity plot (Figures E.73 and E.74) show that the residual distri-
bution closely follows a normal distribution but with a long 
right tail.

Minnesota

The recalibrated model for the standard deviation of TTI with 
the MN set is

( )= −StdDevTTI 0.9611 meanTTI 1MN
0.6961p

The F-test results (Table E.32) show that the model is signifi-
cant. Table E.33 shows the parameter estimation. The fit plot 

Figure E.70. Fit plot in original scale, recalibrated standard deviation  
TTI model, California.

Table E.31. Parameter Estimates, Recalibrated 
Standard Deviation TTI Model, California

Parameter Estimate
Approx.  

Std Error

Approx. 95% 
Confidence 

Limits

a 0.6886 0.0184 0.6523 0.7250

b 0.6444 0.0310 0.5833 0.7055

Table E.30. Analysis of Variance, Recalibrated 
Standard Deviation TTI Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model   2 13.9468 6.9734 1107.15 <0.0001

Error 185  1.1652 0.00630

Uncorrected 
total

187 15.1121

(Figure E.75) and the observed-by-predicted plot (Figure E.76)  
show that the model generally fits the data. The residual-by-
predicted plot (Figure E.77) presents a random pattern, but 
the nonconstant variance problem still exists. The histogram 
and the normality plot (Figures E.78 and E.79) show that the 
residual distribution closely follows a normal distribution but 
with a long left tail.

(text continues on page 264)
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Figure E.71. Observed-by-predicted plot, recalibrated 
standard deviation TTI model, California.

Figure E.72. Residual-by-predicted plot, recalibrated standard deviation 
TTI model, California.
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Figure E.74. Q-Q plot of residuals, recalibrated standard deviation  
TTI model, California.

Figure E.73. Distribution of raw residuals, recalibrated standard deviation 
TTI model, California.
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Table E.33. Parameter Estimates, Recalibrated 
Standard Deviation TTI Model, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.9611 0.0217 0.9179 1.0043

b 0.6961 0.0306 0.6353 0.7570

Table E.32. Analysis of Variance, Recalibrated 
Standard Deviation TTI Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  2 10.8257 5.4129 1485.34 <0.0001

Error 77  0.2806 0.00364

Uncorrected 
total

79 11.1063

Figure E.75. Fit plot in original scale, recalibrated standard deviation 
TTI model, Minnesota.
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Figure E.77. Residual-by-predicted plot, recalibrated standard deviation 
TTI model, Minnesota.

Figure E.76. Observed-by-predicted plot, recalibrated 
standard deviation TTI model, Minnesota.
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Figure E.79. Q-Q plot of residuals, recalibrated standard deviation  
TTI model, Minnesota.

Figure E.78. Distribution of raw residuals, recalibrated standard deviation 
TTI model, Minnesota.
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Figure E.80. Scatter plot in original scale, recalibrated  
PctTripsOnTime50mph model, AllData.

Table E.35. Parameter Estimates, Recalibrated 
PctTripsOnTime50mph Model, AllData

Parameter Estimate
Approx.  

Std Error
Approx. 95% 

Confidence Limits

a -2.0293 0.0514 -2.1305 -1.9281

Table E.34. Analysis of Variance, Recalibrated 
PctTripsOnTime50mph Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model   1 247.3 247.3 40121.7 <0.0001

Error 322 1.9848 0.00616

Uncorrected 
total

323 249.3

PctTripsOnTime50mph

The recalibration of the PctTripsOnTime50mph model is 
conducted by building a nonlinear model between the 
response variable, PctTripsOnTime50mph, and the indepen-
dent variable, mean TTI. The model form is the same as the 
L03 data-poor model form, described as

= [ ]−PctTripsOnTime50mph meanTTI 1�ea

where a is the model parameter to be calibrated.

AllData

The recalibrated model for the PctTripsOnTime50mph with 
the AllData set is

= [ ]− −PctOnTimeTrip50mphAllData
2.0293 meanTTI 1�e

The F-test results (Table E.34) show that the model is signifi-
cant. The parameter estimates are shown in Table E.35. The 
scatter plot (Figure E.80) shows that the regional pattern may 
still exist; that is, when the mean TTI is larger than 1.25, the 
blue points representing MN data tend to scatter beyond the 
model line while the red points representing CA data tend to 
scatter below the blue line. Note that around the origin the 
measured samples are scattered out forming a cone shape, 
but almost all of them are beyond the model line. This results 

in the nonrandom pattern on the right side of the residual-
by-predicted value plot (Figure E.83). The nonconstant 
variance problem still exists in the residual-by-predicted plot. 
These unsatisfactory patterns may mainly be due to the char-
acteristics of the data. The fit plot (Figure E.81) and observed-
by-predicted plot (Figure E.82) are also given. The histogram 
and the normality plot (Figures E.84 and E.85) show that the 
residual distribution is close to a normal distribution when 
the residual is positive but has an unusual long tail on the 
negative side.
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Figure E.81. Fit plot in original scale, recalibrated PctTripsOnTime50mph 
model, AllData.

Figure E.82. Observed-by-predicted plot, recalibrated 
PctTripsOnTime50mph model, AllData.
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Figure E.83. Residual-by-predicted plot, recalibrated  
PctTripsOnTime50mph model, AllData.

Figure E.84. Distribution of raw residuals, recalibrated  
PctTripsOnTime50mph model, AllData.
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California

The recalibrated model for the PctTripsOnTime50mph with 
the CA set is

= [ ]− −PctTripsOnTime50mphCA
2.2663 meanTTI 1�e

The F-test results (Table E.36) show that the model is sig-
nificant. Parameter estimates are shown in Table E.37. The 
fitted-curve-to-data plot (fit plot) (Figure E.86) shows a very 
similar pattern to that of the AllData set. The most obvious 
unusual pattern is that when the mean TTI is close to 1, the 
measured response values are almost all larger than the model 
predicted values (Figure E.87). The nonconstant variance 
problem also exists. The residual-by-predicted plot is shown in  
Figure E.88. The histogram and the normality plot (Figures 
E.89 and E.90) show that the residual distribution is close to 

Figure E.85. Q-Q plot of residuals, recalibrated PctTripsOnTime50mph 
model, AllData.

Table E.37. Parameter Estimates, Recalibrated 
PctTripsOnTime50mph Model, California

Parameter Estimate
Approx. 

Std Error
Approx. 95% 

Confidence Limits

a -2.2663 0.0787 -2.4215 -2.1111

Table E.36. Analysis of Variance, Recalibrated 
PctTripsOnTime50mph Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model   1 135.0 135.0 17643.1 <0.0001

Error 186 1.4229 0.00765

Uncorrected 
total

187 136.4

a normal distribution when it is positive but has a long nega-
tive tail.

Minnesota

The recalibrated model for the PctTripsOnTime50mph with 
the MN set is

= [ ]− −PctTripsOnTime50mphMN
1.6422 meanTTI 1�e

The F-test results (Table E.38) show that the model is signifi-
cant. Parameter estimation is shown in Table E.39. The fit 
plot (Figure E.91) shows that the data samples are in general 
randomly scattered out along the model line, indicating that 
the regionally recalibrated model performs better for the MN 
model than the model built on the AllData set. The observed-
by-predicted plot is shown in Figure E.92. The residual plot 
(Figure E.93) shows that when the mean TTI is close to 1, it is 
still unbalanced. The histogram and the normality plot (Fig-
ures E.94 and E.95) show that the residual distribution is not 
perfectly following a normal distribution.

(text continues on page 273)
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Figure E.86. Fit plot in original scale, recalibrated PctTripsOnTime50mph 
model, California.

Figure E.87. Observed-by-predicted plot, recalibrated 
PctTripsOnTime50mph model, California.
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Figure E.88. Residual-by-predicted plot, recalibrated  
PctTripsOnTime50mph model, California.

Figure E.89. Distribution of raw residuals, recalibrated  
PctTripsOnTime50mph model, California.
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Figure E.90. Q-Q plot of residuals, recalibrated PctTripsOnTime50mph 
model, California.

Table E.39. Parameter Estimates, Recalibrated 
PctTripsOnTime50mph Model, Minnesota

Parameter Estimate
Approx. 

Std Error
Approx. 95% 

Confidence Limits

a -1.6422 0.0486 -1.7390 -1.5454

Table E.38. Analysis of Variance, Recalibrated 
PctTripsOnTime50mph Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  1 59.0003 59.0003 26281.6 <0.0001

Error 78  0.1751 0.00224

Uncorrected 
total

79 59.1754
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Figure E.91. Fit plot in original scale, recalibrated PctTripsOnTime50mph 
model, Minnesota.

Figure E.92. Observed-by-predicted plot, recalibrated 
PctTripsOnTime50mph model, Minnesota.
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Figure E.93. Residual-by-predicted plot, recalibrated  
PctTripsOnTime50mph model, Minnesota.

Figure E.94. Distribution of raw residuals, recalibrated  
PctTripsOnTime50mph model, Minnesota.
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PctTripsOnTime45mph

The recalibration of the PctTripsOnTime45mph model is con-
ducted by building a nonlinear model between the response 
variable, PctTripsOnTime45mph, and the independent vari-
able, mean TTI. The model form is the same as the L03 data-
poor model form, described as

= [ ]−PctTripsOnTime45mph meanTTI 1�ea

where a is the model parameter to be calibrated.

AllData

The recalibrated model for the PctTripsOnTime45mph with 
the AllData set is

= [ ]− −PctTripsOnTime45mphAllData
1.4874 meanTTI 1�e

The model form for the PctTripsOnTime45mph is the same 
as that for the PctTripsOnTime50mph, and the patterns 
shown in the recalibrated models are also very similar. As 
for this recalibrated PctTripsOnTime45mph model, the 
F-test results (Table E.40) show that overall the model is sig-
nificant. The parameter estimation is shown in Table E.41. 
The scatter plot (Figure E.96), fit plot (Figure E.97), and the 
measured-by-predicted plot (Figure E.98) show that the re-
calibrated model line can generally predict the trend in  

the measured data. The regional difference can also be noticed 
from the scatter plot where the blue points representing MN 
data tend to scatter beyond the model line while the red points 
representing CA data tend to scatter below the blue line when 
the mean TTI is larger than 1.25. The nonconstant variance 
problem can be identified in the residual-by-predicted plot 
(Figure E.99). The histogram and the normality plot (Fig-
ures E.100 and E.101) show that the residual distribution has 
a longer negative tail compared to a normal distribution.

Figure E.95. Q-Q plot of residuals, recalibrated PctTripsOnTime50mph 
model, Minnesota.

Table E.41. Parameter Estimates, Recalibrated 
PctTripsOnTime45mph Model, AllData

Parameter Estimate
Approx. 

Std Error
Approx. 95% 

Confidence Limits

a -1.4874 0.0290 -1.5446 -1.4303

Table E.40. Analysis of Variance, Recalibrated 
PctTripsOnTime45mph Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model   1 257.4 257.4 70942.6 <0.0001

Error 322 1.1685 0.00363

Uncorrected 
total

323 258.6
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Figure E.96. Scatter plot in original scale, recalibrated  
PctTripsOnTime45mph model, AllData.

Figure E.97. Fit plot in original scale, recalibrated PctTripsOnTime45mph 
model, AllData.
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Figure E.98. Observed-by-predicted plot, recalibrated 
PctTripsOnTime45mph model, AllData.

Figure E.99. Residual-by-predicted plot, recalibrated  
PctTripsOnTime45mph model, AllData.
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Figure E.100. Distribution of raw residuals, recalibrated  
PctTripsOnTime45mph model, AllData.

Figure E.101. Q-Q plot of residuals, recalibrated PctTripsOnTime45mph 
model, AllData.



277   

California

The recalibrated model for the PctTripsOnTime45mph with 
the CA set is

= [ ]− −PctTripsOnTime45mphCA
1.6125 meanTTI 1�e

The recalibrated model for the CA data set presents similar 
results to that for the AllData set. The F-test results (Table E.42) 
show that the model is significant. The parameter estimation 
is shown in Table E.43. From the fit plot (Figure E.102) we 
can see that when the mean TTI is close to 1, the measured 
response values are almost all larger than the model predicted 
values (Figure E.103). The nonconstant variance problem also 
exists. The residual-by-predicted plot is shown in Figure E.104.  
The histogram and the normality plot (Figures E.105 and 
E.106) show that the residual distribution is close to a normal 
distribution when it is positive but has a long negative tail.

Minnesota

The recalibrated model for the PctTripsOnTime45mph with 
the MN set is

= [ ]− −PctTripsOnTime45mphMN
1.2568 meanTTI 1�e

Similar to the PctTripsOnTime50mph case, the regionally 
recalibrated model works better for the MN data set than the 
model built on the AllData set because the measured samples 

Table E.43. Parameter Estimates, Recalibrated 
PctTripsOnTime45mph Model, California

Parameter Estimate
Approx.  

Std Error
Approx. 95% 

Confidence Limits

a -1.6125 0.0423 -1.6959 -1.5291

Table E.42. Analysis of Variance, Recalibrated 
PctTripsOnTime45mph Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 141.7 141.7 31390.1 <0.0001

Error 186   0.8396   0.00451

Uncorrected 
total

187 142.5

Figure E.102. Fit plot in original scale, recalibrated PctTripsOnTime45mph 
model, California.

are in general randomly scattered out on both sides of the 
model line, although when the mean TTI is close to 1, the model 
tends to underestimate the response variable. The F-test results 
(Table E.44) show that the model is significant. The param-
eter estimation is shown in Table E.45. The fit plot is shown 
in Figure E.107. The observed-by-predicted plot is shown in 
Figure E.108. The residual-by-predicted plot is shown in Fig-
ure E.109. The histogram and the normality plot (Figure E.110 
and Figure E.111) show that the residual distribution is not 
perfectly following a normal distribution.

(text continues on page 283)
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Figure E.103. Observed-by-predicted plot, recalibrated 
PctTripsOnTime45mph model, California.

Figure E.104. Residual-by-predicted plot, recalibrated  
PctTripsOnTime45mph model, California.
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Figure E.105. Distribution of raw residuals, recalibrated  
PctTripsOnTime45mph model, California.

Figure E.106. Q-Q plot of residuals, recalibrated PctTripsOnTime45mph  
model, California.
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Table E.45. Parameter Estimates, Recalibrated 
PctTripsOnTime45mph Model, Minnesota

Parameter Estimate
Approx. 

Std Error
Approx. 95% 

Confidence Limits

a -1.2568 0.0281 -1.3128 -1.2008

Table E.44. Analysis of Variance, Recalibrated 
PctTripsOnTime45mph Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  1 61.7399 61.7399 50278.5 <0.0001

Error 78  0.0958  0.00123

Uncorrected 
total

79 61.8357

Figure E.107. Fit plot in original scale, recalibrated PctTripsOnTime45mph 
model, Minnesota.
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Figure E.108. Observed-by-predicted plot, recalibrated 
PctTripsOnTime45mph model, Minnesota.

Figure E.109. Residual-by-predicted plot, recalibrated  
PctTripsOnTime45mph model, Minnesota.
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Figure E.110. Distribution of raw residuals, recalibrated  
PctTripsOnTime45mph model, Minnesota.

Figure E.111. Q-Q plot of residuals, recalibrated PctTripsOnTime45mph 
model, Minnesota.
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PctTripsOnTime30mph

The recalibration of the PctTripsOnTime30mph model is 
conducted by building a nonlinear model between the response 
variable, PctTripsOnTime30mph, and the independent vari-
able, mean TTI. The model form is the same as the L03 data-
poor model form, described as

[ ]( )
= + −

+ −
PctTripsOnTime30mph

1 exp meanTTI
a

b a

c dp

where a, b, c, d are the four model parameters to be calibrated.

AllData

The recalibrated model for the PctTripsOnTime30mph with 
the AllData set is

[ ]( )
= +

+ −

PctTripsOnTime30mph

0.3401
0.6803

1 exp 4.5026 meanTTI 1.7890

AllData

p

The F-test results (Table E.46) show that overall the model 
is significant. The parameter estimation is shown in 
Table E.47. The scatter plots (Figures E.112 through E.114) 
show that the model line can generally predict the trend in 
the data, indicating that the model is satisfactory in general. 
The residual plot (Figure E.115) presents a general random 

scatter, except for the slight nonconstant variance pattern 
on the right side of the figure. The histogram and the nor-
mality plot (Figures E.116 and E.117) show that the residual 
distribution does not closely follow a normal distribution, 
which may largely be due to the disproportional number of 
residuals close to zero.

Table E.46. Analysis of Variance, Recalibrated 
PctTripsOnTime30mph Model, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 3 3.8334 1.2778 2396.81 <0.0001

Error 319 0.1701 0.000533

Corrected 
total

322 4.0035

Table E.47. Parameter Estimates, Recalibrated 
PctTripsOnTime30mph Model, AllData

Parameter Estimate
Approx.  

Std Error

Approx. 95% 
Confidence 

Limits

a 0.3401 0.0312 0.2787 0.4016

b 0.6803 0.0343 0.6129 0.7478

c 4.5026 0.2817 3.9485 5.0568

d 1.7890 0.0221 1.8324 1.7455

Figure E.112. Scatter plot in original scale, recalibrated  
PctTripsOnTime30mph model, AllData.
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Figure E.113. Fit plot in original scale, recalibrated PctTripsOnTime30mph 
model, AllData.

Figure E.114. Observed-by-predicted plot, recalibrated 
PctTripsOnTime30mph model, AllData.
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Figure E.115. Residual-by-predicted plot, recalibrated  
PctTripsOnTime30mph model, AllData.

Figure E.116. Distribution of raw residuals, recalibrated  
PctTripsOnTime30mph model, AllData.
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California

The recalibrated model for the PctTripsOnTime30mph with 
the CA set is

[ ]( )
= +

+ −

PctTripsOnTime30mph

0.3263
0.6827

1 exp 5.4915 meanTTI 1.7916

CA

p

The F-test (Table E.48) has a small p-value, indicating that 
overall the model is valid. The parameter estimates are shown 
in Table E.49. The fit plot (Figure E.118) and the measured-
by-predicted plot (Figure E.119) confirm that the model can 
predict the trend in the data samples. The residual-by-predicted 
plot (Figure E.120) presents a random pattern in general. 
The histogram and the normality plot (Figures E.121 and 
E.122) show that the residual distribution does not closely 
follow a normal distribution.

Minnesota

The recalibrated model for the PctTripsOnTime30mph with 
the MN set is

[ ]( )
= +

+ −

PctTripsOnTime30mph

0.5795
0.4341

1 exp 6.1112 meanTTI 1.5715

MN

p

Figure E.117. Q-Q plot of residuals, recalibrated  
PctTripsOnTime30mph model, AllData.

Table E.48. Analysis of Variance, Recalibrated 
PctTripsOnTime30mph Model, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 3 2.6242 0.8747 1744.94 <0.0001

Error 183 0.0917 0.000501

Corrected 
total

186 2.7159

Table E.49. Parameter Estimates, Recalibrated 
PctTripsOnTime30mph Model, California

Parameter Estimate
Approx. 

Std Error
Approx. 95% 

Confidence Limits

a 0.3263 0.0248 0.2774 0.3752

b 0.6827 0.0263 0.6307 0.7346

c 5.4915 0.2995 4.9005 6.0824

d 1.7916 0.0157 1.8226 1.7605

The F-test (Table E.50) has a small p-value, indicating that 
overall the model is valid. The parameter estimates are shown 
in Table E.51. The fit plot (Figure E.123) and the measured-
by-predicted plot (Figure E.124) confirm that the model can 
predict the trend in the data samples, resulting in the random 
pattern in the residual-by-predicted plot (Figure E.125) 
although the nonconstant variance problem may still slightly 
exist (Figures E.126 and E.127).

(text continues on page 292)
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Figure E.118. Fit plot in original scale, recalibrated PctTripsOnTime30mph 
model, California.

Figure E.119. Observed-by-predicted plot, recalibrated 
PctTripsOnTime30mph model, California.
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Figure E.120. Residual-by-predicted plot, recalibrated  
PctTripsOnTime30mph model, California.

Figure E.121. Distribution of raw residuals, recalibrated  
PctTripsOnTime30mph model, California.
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Figure E.122. Q-Q plot of residuals, recalibrated PctTripsOnTime30mph 
model, California.

Table E.50. Analysis of Variance, Recalibrated 
PctTripsOnTime30mph Model, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 3 1.0652 0.3551 1168.55 <0.0001

Error 75 0.0228 0.000304

Corrected 
total

78 1.0880

Table E.51. Parameter Estimates, Recalibrated 
PctTripsOnTime30mph Model, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.5795 0.0191 0.5414 0.6175

b 0.4341 0.0247 0.3850 0.4833

c 6.1112 0.7944 4.5287 7.6937

d 1.5715 0.0157 1.6028 1.5402
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Figure E.124. Observed-by-predicted plot, recalibrated 
PctTripsOnTime30mph model, Minnesota.

Figure E.123. Fit plot in original scale, recalibrated PctTripsOnTime30mph 
model, Minnesota.
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Figure E.125. Residual-by-predicted plot, recalibrated  
PctTripsOnTime30mph model, Minnesota.

Figure E.126. Distribution of raw residuals, recalibrated  
PctTripsOnTime30mph model, Minnesota.
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new Models

This chapter presents the results of the new model development 
for the 95th-, 90th-, and 80th-percentile TTI SHRP 2 L03 mod-
els. The new model development was performed on three of the 
L33 data sets: California, Minnesota, and AllData (representing 
roadway sections in both CA and MN). Three enhanced models 
were developed: (1) a single-parameter power form model; (2) a  
two-parameter power form model; and (3) a two-parameter 
polynomial model. For each of the measures, this appendix 
contains a summary table of the mean square error (MSE) for 
the recalibrated model and the three new models. Note that all 
modeling results in this chapter are built on a reduced data set 
that excludes two outlier samples. As such, the MSE values for 
the recalibration models shown in this chapter may be different 
from those presented in the previous chapter. The new models 
show the most significant improvements for the 80th-percentile 
TTI model and the least improvement for the 95th-percentile 
TTI model. Based on the results of the data-poor recalibration 
and enhancement, the L33 project team recommends that the 
SHRP 2 program recommend the new models for adoption. 
This recommendation is based on the following reasons:

1. The residual-by-predicted value plot shows improvement 
in the shape and in the balance of scatter around the origin, 

indicating that the new models better satisfy the assump-
tions of regression. Note that there is still a problem with 
the nonconstant variance that, due to data characteristics, 
may not be possible to fully solve.

2. The new models allow for a consistent model form between 
different percentile TTI measures.

3. Since the variance of travel times tends to increase with 
the mean travel time, reliability model curves should show 
an increasing pattern at an increasing rate. The new models 
satisfy this characteristic in a way that the original L03 data-
poor models (which show a decreasing rate of increase) 
do not.

95th-Percentile TTI

Summary

The MSE summary table (Table E.52) shows that the recali-
brated 95th-percentile TTI model has a smaller MSE value 
than the new models. However, due to the reasons stated 
above and the fact that the MSE values are similar between 
the recalibrated and new models, we still propose that the 
SHRP 2 program adopt the new models.

When evaluating the MSE tables, it is important to keep in 
mind that there is no benchmark to decide how much smaller 

Figure E.127. Q-Q plot of residuals, recalibrated PctTripsOnTime30mph 
model, Minnesota.
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Table E.52. MSE Summary Table (Comparable)

Model Name Formula AllData CA MN

Recalibration y = 1 + a p ln(x) 0.0277 0.0255 0.0234

1-parameter power y = xb 0.0300 0.0273 0.0408

2-parameter power y = a p xb 0.0286 0.0264 0.0345

2-parameter polynomial y = a p x + b p x2 0.0289 0.0268 0.0352

of an MSE makes the model better. In this case, due to the fact 
that the validation data sets have a relatively small range in 
the mean TTI, each of the four types of models has predictive 
power. However, the research team believes the new models 
are more consistent with professional knowledge and real 
world experience.

The following three sections present the new models built 
for the 95th-percentile TTI with the AllData (Tables E.54, 
E.56, and E.58), CA (Tables E.60, E.62, and E.64), and MN 
(Tables E.66, E.68, and E.70) data sets. The three models 
present very similar results in terms of fit plot (Figures E.128, 
E.129, E.134, E.135, E.140, E.141, E.146, E.151, E.156, E.161, 
E.166, and E.171) and residual-by-predicted plot (Figures E.131, 
E.137, E.143, E.148, E.153, E.158, E.163, E.168, and E.173). 
Regional differences can be identified in the plots. All the 
models passed the F-test (Tables E.53, E.55, E.57, E.59, E.61, 
E.63, E.65, E.67, and E.69), indicating overall validity. The fit 
plots and the observed-by-predicted plots (Figures E.130, 
E.136, E.142, E.147, E.152, E.157, E.162, E.167, and E.172) 
show that the model can predict the trend in the data set. 
The residual-by-predicted plots show an improvement in 
the nonrandom pattern around the origin, although the 
nonconstant variance problem still exists. The histograms 
(Figures E.132, E.138, E.144, E.149, E.154, E.159, E.164, 
E.169, and E.174) and the normality plots (Figures E.133, 
E.139, E.145, E.150, E.155, E.160, E.165, E.170 and E.175) 
indicate that the normality assumption may still be violated. 
Due to the validation data characteristics, the nonconstant 
variance problem and the violation of normality problem 
may be hard to get rid of.

The MN modeling results raise a questionable pattern 
because the residual-by-predicted plots for all three new model 
forms show an unbalanced distribution of residual points and 
a concave shape. In fact, the original data-poor model for the 
95th-percentile TTI model fits better. However, such results 
may be due to insufficient data points. Although the MN data 
set has 79 samples, most of them are around the origin area 
(low mean TTI and high reliability). To make the model form 
consistent, the team still proposes adopting the three new 
model forms.

Table E.53. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
95th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 793.5 793.5 26492.1 <0.0001

Error 320 9.5845 0.0300

Uncorrected 
total

321 803.1

Table E.54. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
95th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.9566 0.0146 1.9279 1.9853

AllData

poWeR foRM Model With a Single paRaMeteR

Model:

=95th-percentile TTI meanTTIAllData
1.9566

poWeR foRM Model With tWo paRaMeteRS

Model:

=95th-percentile TTI 1.0406 meanTTIAllData
1.8821p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=95th-percentile TTI 1.1494 meanTTI

+ 0.8902 meanTTI

AllData

2

p

p

(text continues on page 304)
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Figure E.129. Fit plot, new model: power form with a single parameter, 
95th-percentile TTI, AllData.

Figure E.128. Fit plot by region, new model: power form with a single 
parameter, 95th-percentile TTI, AllData.
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Figure E.130. Observed-by-predicted plot, new model: 
power form with a single parameter, 95th-percentile TTI, 
AllData.

Figure E.131. Residual-by-predicted plot, new model: power form  
with a single parameter, 95th-percentile TTI, AllData.
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Figure E.133. Q-Q plot of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, AllData.

Figure E.132. Distribution of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, AllData.
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Table E.55. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
95th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 793.9 397.0 13865.6 <0.0001

Error 319 9.1328 0.0286

Uncorrected 
total

321 803.1

Table E.56. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
95th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0406 0.0103 1.0203 1.0609

b 1.8821 0.0236 1.8358 1.9285

Figure E.134. Fit plot by region, new model: power form  
with two parameters, 95th-percentile TTI, AllData.
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Figure E.135. Fit plot, new model: power form with two parameters, 
95th-percentile TTI, AllData.

Figure E.136. Observed-by-predicted plot, new model: 
power form with two parameters, 95th-percentile TTI, 
AllData.
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Figure E.137. Residual-by-predicted plot, new model: power form 
with two parameters, 95th-percentile TTI, AllData.

Figure E.138. Distribution of residuals, new model: power form  
with two parameters, 95th-percentile TTI, AllData.
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Figure E.139. Q-Q plot of residuals, new model: power form with  
two parameters, 95th-percentile TTI, AllData.

Table E.57. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
95th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 793.8 396.9 13716.8 <0.0001

Error 319 9.2308 0.0289

Uncorrected 
total

321 803.1

Table E.58. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
95th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.1494 0.0321 0.0862 0.2125

b 0.8902 0.0241 0.8427 0.9378
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Figure E.140. Fit plot by region, new model: polynomial form with  
two parameters, 95th-percentile TTI, AllData.

Figure E.141. Fit plot, new model: polynomial form with two parameters, 
95th-percentile TTI, AllData.
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Figure E.142. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 95th-percentile TTI, 
AllData.

Figure E.143. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 95th-percentile TTI, AllData.
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Figure E.144. Distribution of residuals, new model: polynomial form 
with two parameters, 95th-percentile TTI, AllData.

Figure E.145. Q-Q plot of residuals, new model: polynomial form 
with two parameters, 95th-percentile TTI, AllData.
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California

poWeR foRM Model With a Single paRaMeteR

Model:

=95th-percentile TTI meanTTICA
1.8922

poWeR foRM Model With tWo paRaMeteRS

Model:

=95th-percentile TTI 1.0363 meanTTICA
1.8232p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=

+

95th-percentile TTI 0.2245 meanTTI

0.8119 meanTTI

CA

2

p

p

Minnesota

poWeR foRM Model With a Single paRaMeteR

Model:

=95th-percentile TTI meanTTIMN
2.0516

poWeR foRM Model With tWo paRaMeteRS

Model:

=95th-percentile TTI 1.0871 meanTTIMN
1.9081p

Table E.59. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
95th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 464.4 464.4 16991.0 <0.0001

Error 184 5.0293 0.0273

Uncorrected 
total

185 469.4

Table E.60. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
95th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.8922 0.0184 1.8559 1.9285

Figure E.146. Fit plot, new model: power form with a single parameter, 
95th-percentile TTI, California.

polynoMial foRM Model With tWo paRaMeteRS

Model:

=

+

95th-percentile TTI 0.1122 meanTTI

0.9701 meanTTI

MN

2

p

p

(text continues on page 322)
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Figure E.147. Observed-by-predicted plot, new model: 
power form with a single parameter, 95th-percentile TTI, 
California.

Figure E.148. Residual-by-predicted plot, new model: power form 
with a single parameter, 95th-percentile TTI, California.
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Figure E.149. Distribution of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, California.

Figure E.150. Q-Q plot of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, California.
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Table E.61. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
95th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 464.6 232.3 8797.71 <0.0001

Error 183 4.8322 0.0264

Uncorrected 
total

185 469.4

Table E.62. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
95th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0363 0.0134 1.0099 1.0627

b 1.8232 0.0311 1.7619 1.8845

Figure E.151. Fit plot, new model: power form with two parameters,  
95th-percentile TTI, California.
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Figure E.152. Observed-by-predicted plot, new model: 
power form with two parameters, 95th-percentile TTI, 
California.

Figure E.153. Residual-by-predicted plot, new model: power form  
with two parameters, 95th-percentile TTI, California.
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Figure E.154. Distribution of residuals, new model: power form with  
two parameters, 95th-percentile TTI, California.

Figure E.155. Q-Q plot of residuals, new model: power form with  
two parameters, 95th-percentile TTI, California.
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Table E.63. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
95th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 464.5 232.3 8670.53 <0.0001

Error 183 4.9023 0.0268

Uncorrected 
total

185 469.4

Table E.64. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
95th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.2245 0.0414 0.1428 0.3062

b 0.8119 0.0307 0.7514 0.8725

Figure E.156. Fit plot, new model: polynomial form with two parameters, 
95th-percentile TTI, California.
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Figure E.157. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 95th-percentile TTI, 
California.

Figure E.158. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 95th-percentile TTI, California.
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Figure E.159. Distribution of residuals, new model: polynomial form  
with two parameters, 95th-percentile TTI, California.

Figure E.160. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 95th-percentile TTI, California.



313   

Table E.65. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
95th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 250.8 250.8 6151.90 <0.0001

Error 78 3.1795 0.0408

Uncorrected 
total

79 254.0

Table E.66. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
95th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 2.0516 0.0268 1.9983 2.1048

Figure E.161. Fit plot, new model: power form with a single parameter, 
95th-percentile TTI, Minnesota.
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Figure E.162. Observed-by-predicted plot, new model: 
power form with a single parameter, 95th-percentile TTI, 
Minnesota.

Figure E.163. Residual-by-predicted plot, new model: power form  
with a single parameter, 95th-percentile TTI, Minnesota.



315   

Figure E.164. Distribution of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, Minnesota.

Figure E.165. Q-Q plot of residuals, new model: power form with  
a single parameter, 95th-percentile TTI, Minnesota.
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Table E.67. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
95th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 251.3 125.6 3638.20 <0.0001

Error 77 2.6592 0.0345

Uncorrected 
total

79 254.0

Table E.68. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
95th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0871 0.0228 1.0416 1.1325

b 1.9081 0.0443 1.8200 1.9963

Figure E.166. Fit plot, new model: power form with two parameters, 
95th-percentile TTI, Minnesota.
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Figure E.167. Observed-by-predicted plot, new model: 
power form with two parameters, 95th-percentile TTI, 
Minnesota.

Figure E.168. Residual-by-predicted plot, new model: power form 
with two parameters, 95th-percentile TTI, Minnesota.
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Figure E.169. Distribution of residuals, new model: power form with 
two parameters, 95th-percentile TTI, Minnesota.

Figure E.170. Q-Q plot of residuals, new model: power form with  
two parameters, 95th-percentile TTI, Minnesota.
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Table E.69. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
95th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 251.2 125.6 3572.65 <0.0001

Error 77 2.7075 0.0352

Uncorrected 
total

79 254.0

Table E.70. Parameter Estimates,  
New Model: Polynomial Form with Two 
Parameters, 95th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.1122 0.0652 -0.0176 0.2419

b 0.9701 0.0466 0.8772 1.0630

Figure E.171. Fit plot, new model: polynomial form with two parameters, 
95th-percentile TTI, Minnesota.
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Figure E.172. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 95th-percentile TTI, 
Minnesota.

Figure E.173. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 95th-percentile TTI, Minnesota.
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Figure E.174. Distribution of residuals, new model: polynomial form  
with two parameters, 95th-percentile TTI, Minnesota.

Figure E.175. Q-Q plot of residuals, new model: polynomial form 
with two parameters, 95th-percentile TTI, Minnesota.
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90th-Percentile TTI

Summary

For the 90th-percentile TTI models, the MSE table (Table E.71) 
shows that the MSE values for the AllData and the CA data 
sets are smaller with the new models. For the MN data set, the 
recalibration model has the smallest MSE.

The new models (Tables E.73, E.75, E.77, E.79, E.81, E.83, 
E.85, E.87, and E.89) all passed the F-test (Tables E.72, E.74, 
E.76, E.78, E.80, E.82, E.84, E.86, and E.88), indicating over-
all validity. The fit plots (Figures E.176, E.177, E.182, E.183, 
E.188, E.189, E.194, E.199, E.204, E.209, E.214, and E.219) show 
that the new models can predict the data trend well and also 
show the regional differences. The residual-by-predicted plots 
(Figures E.179, E.185, E.191, E.196, E.201, E.206, E.211, E.216, 
and E.221) show improved residual pattern compared with the 
recalibrated models in that the residual samples are more ran-
domly balanced on the two sides of the zero reference line and 
around the origin. The nonconstant variance problem still exists. 
The histograms (Figures E.180, E.186, E.192, E.197, E.202, E.207, 
E.212, E.217, and E.222) and the normality plots (Figures E.181, 
E.187, E.193, E.198, E.203, E.208, E.213, E.218, and E.223) show 
that the residuals may not perfectly follow a normal distribution. 
The observed-by-predicted plots are shown in Figures E.178, 
E.184, E.190, E.195, E.200, E.205, E.210, E.215, and E.220.

AllData

poWeR foRM Model With a Single paRaMeteR

Model:

=90th-percentile TTI meanTTIAllData
1.7324

poWeR foRM Model With tWo paRaMeteRS

Model:

=90th-percentile TTI 1.0099 meanTTIAllData
1.7137p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=

+

90th-percentile TTI 0.3528 meanTTI

0.6591 meanTTI

AllData

2

p

p

California

poWeR foRM Model With a Single paRaMeteR

Model:

=90th-percentile TTI meanTTICA
1.6826

poWeR foRM Model With tWo paRaMeteRS

Model:

90th-percentile TTI 1.0090 meanTTICA
1.6651= p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=90th-percentile TTI 0.4060 meanTTI

+ 0.6055 meanTTI

CA

2

p

p

Table E.71. MSE Summary Table (Comparable)

Model Name Formula AllData CA MN

Recalibration y = 1 + a p ln(x) 0.0137 0.0131 0.0110

1-parameter 
power

y = xb 0.0122 0.0118 0.0151

2-parameter 
power

y = a p xb 0.0121 0.0118 0.0144

2-parameter 
polynomial

y = a p x + b p x2 0.0125 0.0121 0.0153

Table E.72. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
90th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 670.6 670.6 55066.8 <0.0001

Error 320 3.8971 0.0122

Uncorrected 
total

321 674.5

Table E.73. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
90th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.7324 0.0106 1.7116 1.7532

(text continues on page 342)
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Figure E.176. Fit plot by region, new model: power form with  
a single parameter, 90th-percentile TTI, AllData.

Figure E.177. Fit plot, new model: power form with a single parameter, 
90th-percentile TTI, AllData.
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Figure E.178. Observed-by-predicted plot, new model: 
power form with a single parameter, 90th-percentile TTI, 
AllData.

Figure E.179. Residual-by-predicted plot, new model: power form 
with a single parameter, 90th-percentile TTI, AllData.
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Figure E.180. Distribution of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, AllData.

Figure E.181. Q-Q plot of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, AllData.
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Table E.74. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
90th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 670.6 335.3 27631.9 <0.0001

Error 319 3.8712 0.0121

Uncorrected 
total

321 674.5

Table E.75. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
90th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0099 0.00677 0.9965 1.0232

b 1.7137 0.0166 1.6810 1.7464

Figure E.182. Fit plot by region, new model: power form with  
two parameters, 90th-percentile TTI, AllData.
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Figure E.183. Fit plot, new model: power form with two parameters,  
90th-percentile TTI, AllData.

Figure E.184. Observed-by-predicted plot, new model: 
power form with two parameters, 90th-percentile TTI, 
AllData.
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Figure E.185. Residual-by-predicted plot, new model: power form 
with two parameters, 90th-percentile TTI, AllData.

Figure E.186. Distribution of residuals, new model: power form with  
two parameters, 90th-percentile TTI, AllData.
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Figure E.187. Q-Q plot of residuals, new model: power form with  
two parameters, 90th-percentile TTI, AllData.

Table E.76. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 670.5 335.3 26887.0 <0.0001

Error 319 3.9778 0.0125

Uncorrected 
total

321 674.5

Table E.77. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.3528 0.0211 0.3114 0.3943

b 0.6591 0.0159 0.6279 0.6903



330

Figure E.188. Fit plot by region, new model: polynomial form with  
two parameters, 90th-percentile TTI, AllData.

Figure E.189. Fit plot, new model: polynomial form with two parameters, 
90th-percentile TTI, AllData.
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Figure E.190. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 90th-percentile TTI, 
AllData.

Figure E.191. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 90th-percentile TTI, AllData.
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Figure E.192. Distribution of residuals, new model: polynomial form  
with two parameters, 90th-percentile TTI, AllData.

Figure E.193. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 90th-percentile TTI, AllData.
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Table E.78. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
90th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 397.0 397.0 33589.4 <0.0001

Error 184 2.1745 0.0118

Uncorrected 
total

185 399.1

Table E.79. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
90th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.6826 0.0136 1.6559 1.7094

Figure E.194. Fit plot by region, new model: power form with  
a single parameter, 90th-percentile TTI, California.
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Figure E.195. Observed-by-predicted plot, new model: 
power form with a single parameter, 90th-percentile TTI, 
California.

Figure E.196. Residual-by-predicted plot, new model: power form  
with a single parameter, 90th-percentile TTI, California.
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Figure E.197. Distribution of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, California.

Figure E.198. Q-Q plot of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, California.
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Table E.80. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
90th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 397.0 198.5 16793.9 <0.0001

Error 183 2.1628 0.0118

Uncorrected 
total

185 399.1

Table E.81. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
90th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0090 0.00905 0.9911 1.0268

b 1.6651 0.0223 1.6212 1.7091

Figure E.199. Fit plot, new model: power form with two parameters,  
90th-percentile TTI, California.
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Figure E.200. Observed-by-predicted plot, new model: 
power form with two parameters, 90th-percentile TTI, 
California.

Figure E.201. Residual-by-predicted plot, new model: power form  
with two parameters, 90th-percentile TTI, California.
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Figure E.202. Distribution of residuals, new model: power form with  
two parameters, 90th-percentile TTI, California.

Figure E.203. Q-Q plot of residuals, new model: power form with  
two parameters, 90th-percentile TTI, California.
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Table E.82. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 396.9 198.5 16354.7 <0.0001

Error 183 2.2206 0.0121

Uncorrected 
total

185 399.1

Table E.83. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.4060 0.0279 0.3510 0.4610

b 0.6055 0.0207 0.5648 0.6463

Figure E.204. Fit plot, new model: polynomial form with two parameters, 
90th-percentile TTI, California.
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Figure E.205. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 90th-percentile TTI, 
California.

Figure E.206. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 90th-percentile TTI, California.
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Figure E.207. Distribution of residuals, new model: polynomial form  
with two parameters, 90th-percentile TTI, California.

Figure E.208. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 90th-percentile TTI, California.
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Table E.85. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
90th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.8113 0.0188 1.7739 1.8488

Table E.84. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
90th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 201.6 201.6 13391.4 <0.0001

Error 78 1.1740 0.0151

Uncorrected 
total

79 202.7

Figure E.209. Fit plot, new model: power form with a single parameter, 
90th-percentile TTI, Minnesota.

Minnesota

poWeR foRM Model With a Single paRaMeteR

Model:

=90th-percentile TTI meanTTIMN
1.8113

poWeR foRM Model With tWo paRaMeteRS

Model:

=90th-percentile TTI 1.0320 meanTTIMN
1.7562p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=90th-percentile TTI 0.3102 meanTTI

+ 0.7225 meanTTI

MN

2

p

p

(text continues on page 351)
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Figure E.210. Observed-by-predicted plot, new model: 
power form with a single parameter, 90th-percentile TTI, 
Minnesota.

Figure E.211. Residual-by-predicted plot, new model: power form  
with a single parameter, 90th-percentile TTI, Minnesota.
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Figure E.212. Distribution of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, Minnesota.

Figure E.213. Q-Q plot of residuals, new model: power form with  
a single parameter, 90th-percentile TTI, Minnesota.
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Table E.86. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
90th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 201.6 100.8 7018.73 <0.0001

Error 77 1.1060 0.0144

Uncorrected 
total

79 202.7

Table E.87. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
90th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 1.0320 0.0149 1.0024 1.0617

b 1.7562 0.0314 1.6937 1.8188

Figure E.214. Fit plot, new model: power form with two parameters,  
90th-percentile TTI, Minnesota.
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Figure E.215. Observed-by-predicted plot, new model: 
power form with two parameters, 90th-percentile TTI, 
Minnesota.

Figure E.216. Residual-by-predicted plot, new model: power form  
with two parameters, 90th-percentile TTI, Minnesota.
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Figure E.217. Distribution of residuals, new model: power form with  
two parameters, 90th-percentile TTI, Minnesota.

Figure E.218. Q-Q plot of residuals, new model: power form with  
two parameters, 90th-percentile TTI, Minnesota.
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Table E.88. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 201.6 100.8 6606.74 <0.0001

Error 77 1.1746 0.0153

Uncorrected 
total

79 202.7

Table E.89. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
90th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.3102 0.0429 0.2247 0.3956

b 0.7225 0.0307 0.6614 0.7837

Figure E.219. Fit plot, new model: polynomial form with two parameters, 
90th-percentile TTI, Minnesota.
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Figure E.220. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 90th-percentile TTI, 
Minnesota.

Figure E.221. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 90th-percentile TTI, Minnesota.
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Figure E.222. Distribution of residuals, new model: polynomial form 
with two parameters, 90th-percentile TTI, Minnesota.

Figure E.223. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 90th-percentile TTI, Minnesota.
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80th-Percentile TTI

Summary

For the 80th-percentile TTI, the new models all have smaller 
MSE values than the recalibrated model. The MSE for the 
AllData set is reduced by almost 50% with the new models 
(Table E.90).

The new models (Tables E.92, E.94, E.96, E.98, E.100, 
E.102, E.104, E.106, and E.108) perform much better than the 
L03 data-poor models for the 80th-percentile TTI (F-tests 
shown in Tables E.91, E.93, E.95, E.97, E.99, E.101, E.103, E.105, 
and E.107). The significant improvement is shown in both 
the fit plots (Figures E.224, E.229, E.234, E.239, E.244, E.249, 
E.254, E.259, and E.264) and the observed-by-predicted plots 
(Figures E.225, E.230, E.235, E.240, E.245, E.250, E.255, E.260, 
and E.265). The residual-by-predicted plots (Figures E.226, 
E.231, E.236, E.241, E.246, E.251, E.256, E.261, and E.266) 
all show generally random patterns, although the nonconstant 
problem still exists. The histograms (Figures E.227, E.232, 
E.237, E.242, E.247, E.252, E.257, E.262, and E.267) and the 
normality plots (Figures E.228, E.233, E.238, E.243, E.248, E.253, 
E.258, E.263, and E.268) show that the residual distributions 
may not perfectly follow a normal distribution. Overall, the 
new models work much better than the L03 data-poor model 
for the 80th-percentile TTI.

AllData

poWeR foRM Model With a Single paRaMeteR

Model:

=80th-percentile TTI meanTTIAllData
1.4448

poWeR foRM Model With tWo paRaMeteRS

Model:

=80th-percentile TTI 0.9943 meanTTIAllData
1.4559p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=80th-percentile TTI 0.6166 meanTTI

+ 0.3809 meanTTI

AllData

2

p

p

California

poWeR foRM Model With a Single paRaMeteR

Model:

=80th-percentile TTI meanTTICA
1.4148

poWeR foRM Model With tWo paRaMeteRS

Model:

=80th-percentile TTI 0.9943 meanTTICA
1.4264p

polynoMial foRM Model With tWo paRaMeteRS

Model:

=80th-percentile TTI 0.6428 meanTTI

+ 0.3547 meanTTI

CA

2

p

p

Table E.90. MSE Summary Table (Comparable)

Model Name Formula AllData CA MN

Recalibration y = 1 + a * ln(x) 0.00469 0.00410 0.00506

1-parameter 
power

y = xb 0.00239 0.00178 0.00384

2-parameter 
power

y = a * xb 0.00237 0.00176 0.00389

2-parameter 
polynomial

y = a * x + b * x2 0.00245 0.00179 0.00436

Table E.91. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
80th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 558.4 558.4 233468 <0.0001

Error 320 0.7654 0.00239

Uncorrected 
total

321 559.2

Table E.92. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
80th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.4448 0.00549 1.4340 1.4556

(text continues on page 369)
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Figure E.224. Fit plot, new model: power form with a single parameter, 
80th-percentile TTI, AllData.

Figure E.225. Observed-by-predicted plot, new model: 
power form with a single parameter, 80th-percentile TTI, 
AllData.
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Figure E.226. Residual-by-predicted plot, new model: power form  
with a single parameter, 80th-percentile TTI, AllData.

Figure E.227. Distribution of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, AllData.
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Figure E.228. Q-Q plot of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, AllData.

Table E.93. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
80th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 558.4 279.2 117639 <0.0001

Error 319 0.7571 0.00237

Uncorrected 
total

321 559.2

Table E.94. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
80th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.9943 0.00304 0.9884 1.0003

b 1.4559 0.00810 1.4399 1.4718
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Figure E.229. Fit plot, new model: power form with two parameters,  
80th-percentile TTI, AllData.

Figure E.230. Observed-by-predicted plot, new model: 
power form with two parameters, 80th-percentile TTI,  
AllData.



356

Figure E.231. Residual-by-predicted plot, new model: power form  
with two parameters, 80th-percentile TTI, AllData.

Figure E.232. Distribution of residuals, new model: power form with  
two parameters, 80th-percentile TTI, AllData.
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Figure E.233. Q-Q plot of residuals, new model: power form with  
two parameters, 80th-percentile TTI, AllData.

Table E.95. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, AllData

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 558.4 279.2 113766 <0.0001

Error 319 0.7829 0.00245

Uncorrected 
total

321 559.2

Table E.96. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, AllData

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.6166 0.00935 0.5983 0.6350

b 0.3809 0.00703 0.3671 0.3948
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Figure E.234. Fit plot, new model: polynomial form with two parameters, 
80th-percentile TTI, AllData.

Figure E.235. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 80th-percentile TTI, 
AllData.
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Figure E.236. Residual-by-predicted plot, new model: polynomial form 
with two parameters, 80th-percentile TTI, AllData.

Figure E.237. Distribution of residuals, new model: polynomial form  
with two parameters, 80th-percentile TTI, AllData.
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Figure E.238. Q-Q plot of residuals, new model: polynomial form with 
two parameters, 80th-percentile TTI, AllData.

Table E.97. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
80th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 1 333.3 333.3 187478 <0.0001

Error 184 0.3271 0.00178

Uncorrected 
total

185 333.6

Table E.98. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
80th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.4148 0.00607 1.4029 1.4268
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Figure E.239. Fit plot, new model: power form with a single parameter, 
80th-percentile TTI, California.

Figure E.240. Observed-by-predicted plot, new model: 
power form with a single parameter, 80th-percentile TTI, 
California.
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Figure E.241. Residual-by-predicted plot, new model: power form 
with a single parameter, 80th-percentile TTI, California.

Figure E.242. Distribution of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, California.
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Figure E.243. Q-Q plot of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, California.

Table E.99. Analysis of Variance, New Model:  
Power Form with Two Parameters,  
80th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 333.3 166.6 94557.3 <0.0001

Error 183 0.3225 0.00176

Uncorrected 
total

185 333.6

Table E.100. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
80th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.9943 0.00354 0.9873 1.0013

b 1.4264 0.00936 1.4079 1.4448
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Figure E.244. Fit plot, new model: power form with two parameters,  
80th-percentile TTI, California.

Figure E.245. Observed-by-predicted plot, new model: 
power form with two parameters, 80th-percentile TTI, 
California.
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Figure E.246. Residual-by-predicted plot, new model: power form 
with two parameters, 80th-percentile TTI, California.

Figure E.247. Distribution of residuals, new model: power form with  
two parameters, 80th-percentile TTI, California.
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Figure E.248. Q-Q plot of residuals, new model: power form with  
two parameters, 80th-percentile TTI, California.

Table E.101. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, California

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model 2 333.3 166.6 93176.0 <0.0001

Error 183 0.3273 0.00179

Uncorrected 
total

185 333.6

Table E.102. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, California

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.6428 0.0107 0.6217 0.6639

b 0.3547 0.00793 0.3391 0.3704
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Figure E.249. Fit plot, new model: polynomial form with two parameters, 
80th-percentile TTI, California.

Figure E.250. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 80th-percentile TTI, 
California.



368

Figure E.251. Residual-by-predicted plot, new model: polynomial 
form with two parameters, 80th-percentile TTI, California.

Figure E.252. Distribution of residuals, new model: polynomial form  
with two parameters, 80th-percentile TTI, California.
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Figure E.253. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 80th-percentile TTI, California.
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Table E.103. Analysis of Variance, New Model:  
Power Form with a Single Parameter,  
80th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  1 157.4 157.4 41002.4 <0.0001

Error 78 0.2994 0.00384

Uncorrected 
total

79 157.7

Table E.104. Parameter Estimates, New Model: 
Power Form with a Single Parameter,  
80th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

b 1.4955 0.0115 1.4727 1.5183
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Figure E.254. Fit plot, new model: power form with a single parameter, 
80th-percentile TTI, Minnesota.

Figure E.255. Observed-by-predicted plot, new model: 
power form with a single parameter, 80th-percentile TTI, 
Minnesota.
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Figure E.256. Residual-by-predicted plot, new model: power form 
with a single parameter, 80th-percentile TTI, Minnesota.

Figure E.257. Distribution of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, Minnesota.
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Figure E.258. Q-Q plot of residuals, new model: power form with  
a single parameter, 80th-percentile TTI, Minnesota.

Table E.105. Analysis of Variance, New Model: 
Power Form with Two Parameters,  
80th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  2 157.4 78.6883 20241.1 <0.0001

Error 77 0.2993 0.00389

Uncorrected 
total

79 157.7

Table E.106. Parameter Estimates, New Model: 
Power Form with Two Parameters,  
80th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.9992 0.00786 0.9835 1.0149

b 1.4969 0.0183 1.4605 1.5333
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Figure E.259. Fit plot, new model: power form with two parameters,  
80th-percentile TTI, Minnesota.

Figure E.260. Observed-by-predicted plot, new model: 
power form with two parameters, 80th-percentile TTI, 
Minnesota.
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Figure E.261. Residual-by-predicted plot, new model: power form 
with two parameters, 80th-percentile TTI, Minnesota.

Figure E.262. Distribution of residuals, new model: power form with  
two parameters, 80th-percentile TTI, Minnesota.
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Figure E.263. Q-Q plot of residuals, new model: power form with  
two parameters, 80th-percentile TTI, Minnesota.

Table E.107. Analysis of Variance, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, Minnesota

Source DF
Sum of 
Squares

Mean 
Square F-Value

Approx. 
Pr > F

Model  2 157.3 78.6702 18059.0 <0.0001

Error 77 0.3354 0.00436

Uncorrected 
total

79 157.7

Table E.108. Parameter Estimates, New Model: 
Polynomial Form with Two Parameters,  
80th-Percentile TTI, Minnesota

Parameter Estimate
Approx. 

Std Error

Approx. 95% 
Confidence 

Limits

a 0.5858 0.0229 0.5401 0.6315

b 0.4173 0.0164 0.3846 0.4500
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Figure E.264. Fit plot, new model: polynomial form with two parameters, 
80th-percentile TTI, Minnesota.

Figure E.265. Observed-by-predicted plot, new model: 
polynomial form with two parameters, 80th-percentile TTI, 
Minnesota.
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Figure E.266. Residual-by-predicted plot, new model: polynomial 
form with two parameters, 80th-percentile TTI, Minnesota.

Figure E.267. Distribution of residuals, new model: polynomial form  
with two parameters, 80th-percentile TTI, Minnesota.
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Figure E.268. Q-Q plot of residuals, new model: polynomial form  
with two parameters, 80th-percentile TTI, Minnesota.
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